Catherine Westbrook - Handbook of MRI Technique

Здесь есть возможность читать онлайн «Catherine Westbrook - Handbook of MRI Technique» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of MRI Technique: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of MRI Technique»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

HANDBOOK OF MRI TECHNIQUE
FIFTH EDITION Handbook of MRI Technique.
Handbook of MRI Technique

Handbook of MRI Technique — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of MRI Technique», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ensure that the receiving side of the coil faces the patient. This is usually labelled on the coil itself. Note that both sides of the coil usually receive signal, but coils are designed so that one side receives optimum signal. This is especially true of shaped coils that fit a certain anatomical area. If the wrong side of the coil faces the patient, signal is lost, and image quality suffers.

Place the coil as close as possible to the area under examination.

The coil should not directly touch the patient’s skin as it may become warm during the examination and cause discomfort. A small foam pad placed between the skin surface and the coil is usually sufficient insulation.

Ensure that the coil does not move when placed on the patient. A moving coil during data acquisition always produces a moving image.

Ensure that the receiving surface of the coil is parallel to the z (long) axis of the magnet. This guarantees that the transverse component of magnetization is perpendicular to the coil and that maximum signal is induced. Placing the coil at an angle to this axis, or parallel to the x or y axis, results in a loss of signal ( Figure 1.1). Note that the axes discussed here relate to a superconducting magnet. Open systems may label their axes differently, but the principle remains the same. To generate signal in a receiver coil on any type of system, the receiver coil must be located perpendicular to the transverse component of magnetization.

PATIENT POSITIONING

This contains a description of the correct patient position, placement of the patient within the coil and proper immobilization techniques. Centring and landmarking are described relative to the laser light system on a superconducting system as follows ( Figure 1.2):

The longitudinal alignment light refers to the light running parallel to the bore of the magnet in the z axis.

The horizontal alignment light refers to the light that runs from left to right of the bore of the magnet in the x axis.

The vertical alignment light refers to the light that runs from the top to the bottom of the magnet in the y axis.

It is assumed in Part 2that the following areas are examined with the patient placed head‐first in the magnet:

head and neck (all areas)

cervical, thoracic and whole spine

chest (all areas)

abdomen (for areas superior to the iliac crests)

shoulders and upper limb (except where specified).

The remaining anatomical regions are examined with the patient placed feet‐first in the magnet. These are:

pelvis

hips

lower limbs.

Figure 12 Positioning of the alignment lights SLICE PRESCRIPTION This - фото 4

Figure 1.2 Positioning of the alignment lights.

SLICE PRESCRIPTION

This section describes the anatomical landmarks for slice prescription and angulation of imaging planes used in each examination area. All protocols begin with a three‐plane localizer from which slices are prescribed. Imaging coordinates are provided for at least one plane in the three‐plane localizer acquisition.

SUGGESTED PROTOCOL

This is intended as a guideline only. Almost every centre uses different protocols depending on the type of system and radiological preference. However, this section can be helpful for those practitioners scanning without a radiologist, or where the examination is so rare that perhaps neither the radiologist nor the practitioner knows how to proceed. The protocol description is mainly limited to scan plane, weighting, pulse sequence(s) and why it is used. For details of suggested protocol parameters see Table 2.1.

It must be stressed that all the protocols listed are only a reflection of the authors’ practice and research. However, the protocols provided in this section are considered to be the most commonly used. In most examinations, there is a section reserved for Additional techniques . These are not regarded as routine but may be included in the examination. Of course, some practitioners may regard what we call ‘additional’ as ‘routine’, and vice versa.

PROTOCOL OPTIMIZATION

This section is subdivided into:

Technical issues: This includes a discussion of the relationship of SNR, CNR, spatial resolution and scan time pertaining to each examination. Suggestions on how to optimize these factors are described (see Protocol parameters and trade‐offs). The correct use of pulse sequences and various imaging options are also discussed (see also Pulse sequences).

Artefact problems: This contains a description of the common artefacts encountered and ways in which they can be eliminated or reduced (see also Flow phenomena and artefacts).

PATIENT CONSIDERATIONS

This encompasses the condition of the patient, including symptoms and claustrophobia. Suggestions to overcome these are given (see also Patient care and safety ).

CONTRAST USAGE

The reasons for administering a contrast agent in each examination area are discussed. The use of contrast agents varies widely according to radiological preferences. This section should be used as a guide only (see also Contrast agents ).

SUMMARY

Follow this 10‐point plan for good radiographic practice:

1 Review all cases carefully and select appropriate protocols.

2 Have flexible protocols that can reflect the needs of each individual clinical case.

3 Regularly review your protocols and procedures and benchmark them against current best practice.

4 Have clear diagnostic goals including the minimum accepted protocol necessary to obtain a useful diagnostic/clinical outcome.

5 Regularly review your protocols and procedures.

6 Understand the capabilities of your system.

7 Recognize your limitations and, if necessary, refer to another site rather than risk an incomplete or diagnostically unacceptable procedure.

8 Educate all levels of staff to new procedures and/or system capabilities.

9 Be safety paranoid to ensure your unit does not fall victim to the dreaded MRI incident.

10 Most importantly, enjoy your patients and give them the highest standard of care possible.

TERMS AND ABBREVIATIONS USED IN PART 2

Wherever possible, generic terms have been used to describe protocol parameters, particularly pulse sequences and imaging options. Explanations of these can be found in the various sections of Part 1. To avoid ambiguity, the specific following terms have been used:

Fat suppression: includes all fat suppression techniques such as fat saturation (FAT SAT), spectrally selective inversion recovery (SPIR) and Dixon methods.

Gradient moment nulling (GMN): gradient moment rephasing (GMR) and flow compensation (FC).

Oversampling: no phase wrap, anti‐aliasing and anti‐foldover

Rectangular FOV: rectangular or asymmetric FOV

Respiratory compensation (RC): phase reordering and respiratory triggering techniques

Abbreviations are used throughout the book for simplification purposes. A summary of these can be found in Table 1.1. In addition, Table 1.2summarizes the slice prescription parameters for each examination in Part 2and a comparison of acronyms used by certain vendors to describe pulse sequences and imaging options is given in Table 3.1(see Pulse sequences in Part 1).

Table 1.1 Abbreviations used in this book.

A Anterior
AC Number of acquisitions
ACL Anterior cruciate ligament
ACPC Anterior–posterior commissure axis
ACR American College of Radiologists
ADC Apparent diffusion coefficient
ADEM Acute disseminating encephalomyelitis
AIDS Autoimmune deficiency syndrome
ASIS Anterior superior iliac spine
ASTM American Society for Testing and Materials
AVM Arteriovenous malformation
AVN Avascular necrosis
BFFE Balanced fast field echo
BGRE Balanced gradient echo
BOLD Blood oxygenation level dependent
CDH Congenital dislocation of the hips
CE‐MRA Contrast enhanced magnetic resonance angiography
CNR Contrast to noise ratio
CNS Central nervous system
COPD Chronic obstructive pulmonary disease
CSE Conventional spin echo
CSF Cerebral spinal fluid
CSI Chemical shift imaging
CSR Chemical shift ratio
CT Computer tomography
CVA Cerebral vascular accident
DE Prep Driven equilibrium magnetization preparation
DTI Diffusion tensor imaging
DWI Diffusion weighted imaging
EAM External auditory meatus
ECG Electrocardiogram
EKG Electrocardiogram (US spelling)
EPI Echo planar imaging
ETL Echo train length
FA Fractional anisotropy
FAT SAT Fat saturation
FC Flow compensation
FDA Food and Drug Administration
FFE Fast field echo
FID Free induction decay
FIESTA Free induction echo stimulated acquisition
FISP Free induction steady precession
FLAIR Fluid attenuated inversion recovery
FLASH Fast low angled shot
fMRI Functional magnetic resonance imaging
FOV Field of view
FSE Fast spin echo
Gd Gadolinium
GFE Gradient field echo
GMN Gradient moment nulling
GMR Gradient moment rephasing
GRASS Gradient recalled acquisition in the steady state
GRE Gradient echo
GRE‐EPI Gradient echo – echo planar imaging
HASTE Half acquisition single‐shot turbo spin echo
HIE Hypoxic ischemic event
I Inferior
IAM Internal auditory meatus
ICP Intracranial pressure
IM Intramuscular
IR Inversion recovery
IR‐FSE Inversion recovery – fast spin echo
IR prep Inversion recovery magnetization preparation
IV Intravenous
IVC Inferior vena cava
L Left
MDA Medical Devices Agency
MIP Maximum intensity projection
MOTSA Multiple overlapping thin slab acquisition
MP RAGE Magnetization prepared rapid acquisition gradient echo
MR Magnetic resonance
MRA Magnetic resonance angiography
MRCP Magnetic resonance cholangiopancreatography
MRE Magnetic resonance enterography
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MS Multiple sclerosis
MSK Musculoskeletal
MT Magnetization transfer
MVS Multi‐voxel spectroscopy
NEX Number of excitations
NSA Number of signal averages
NSF Nephrogenic systemic fibrosis
P Posterior
PC Phase contrast
PC‐MRA Phase contrast magnetic resonance angiography
PD Proton density
Pe Peripheral
PEAR Phase encoding artefact reduction
PET Proton emission tomography
ppm Parts per million
PRESS Point resolved spectroscopy
PSIF Reverse FISP
R Right
RC Respiratory compensation
REST Regional saturation technique
RF Radio frequency
ROI Region of interest
RR R to R interval
S Superior
SAR Specific absorption rate
SAT Saturation
SE‐EPI Spin echo – echo planar imaging
SNR Signal to noise ratio
SPAMM Spatial modulation of magnetization
SPGR Spoiled gradient recalled acquisition in the steady state
SPIR Spectrally selective inversion recovery
SS Single shot
SS‐EPI Single‐shot echo planar imaging
SSFP Steady‐state free precession
SS‐FSE Single‐shot fast spin echo
SS‐GRE‐EPI Single‐shot gradient echo EPI
STEAM Stimulated echo acquisition mode
STIR Short TAU inversion recovery
SVS Single‐voxel spectroscopy
SW Susceptibility weighted
TE Time to echo
TF Turbo factor
TFE Turbo field echo
TI Time to inversion
TIA Transient ischaemic attack
TLE Temporal lobe epilepsy
TMJ Temporomandibular joint
TOF Time of flight
TOF‐MRA Time of flight magnetic resonance angiography
TR Time to repeat
True FISP Siemens version of balanced gradient echo
TSE Turbo spin echo
VENC Velocity encoding
VNR Velocity to noise ratio
VOI Volume of interest
VQ Ventilation perfusion scan

Table 1.2 Summary of slice prescription criteria.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of MRI Technique»

Представляем Вашему вниманию похожие книги на «Handbook of MRI Technique» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of MRI Technique»

Обсуждение, отзывы о книге «Handbook of MRI Technique» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x