2.3. Resistencia cruzada y múltiple
La resistencia frecuentemente no se restringe solamente a un ingrediente activo o a un grupo químico de insecticidas, ya que algunos mecanismos de resistencia producen efectos sobre varios ingredientes activos con el mismo y a veces diferente modo de acción. De la misma manera se pueden presentar diferentes mecanismos de resistencia en un mismo individuo en forma simultánea.
2.3.1. Resistencia cruzada
Se produce cuando una población sometida a la presión de selección con un insecticida, adquiere un mecanismo de resistencia a este y a otros insecticidas que, aunque no hayan sido aplicados generalmente, comparten su modo de acción. Por ejemplo, la resistencia por mutaciones kdr y súper kdr en el pulgón verde del duraznero ( Myzus persicae ) que brindan resistencia a piretroides y DDT, los cuales comparten su modo de acción (Bass et al ., 2014). Sin embargo, la adquisición de resistencia metabólica puede incluir a ingredientes activos con diferentes modos de acción. Por ejemplo, el incremento en la actividad de EST E4 y FE4 en el pulgón verde del duraznero ( M. persicae ), le brindan resistencia a organofosforados, mono-metil carbamatos y en menor grado piretroides, los cuales no comparten su modo de acción (Bass et al ., 2014).
2.3.2. Resistencia múltiple
Se produce cuando una población sometida a la presión de selección con un insecticida, se hace resistente a varios insecticidas, aunque no hayan sido aplicados y no importando su grupo químico o modo de acción, ya que presentan al mismo tiempo varios mecanismos de resistencia. Por ejemplo, existen algunos linajes asexuales del pulgón verde del duraznero ( M. persicae ) que al mismo tiempo pueden ser resistentes a varios grupos de insecticidas, ya que presentan las mutaciones kdr (piretroides), MACE (dimetil carbamatos) y niveles de actividad R2 o R3 de EST E4 (organofosforados, monometilcarbamatos y piretroides) (Devonshire et al ., 1998; Bass et al ., 2014).
2.4. Bases genéticas de la resistencia
La resistencia a insecticidas debe ser heredable y por lo tanto debe estar basada sobre variabilidad genética aditiva. Esta variabilidad genética aditiva puede ser resultado de uno o muchos genes (Roush y McKenzie, 1987; McKenzie, 2001). La resistencia que se presenta en condiciones de campo, generalmente en poblaciones de la plaga con grandes tamaños poblacionales que permiten que alelos raros de baja frecuencia se encuentren presentes, es producto de aplicaciones de insecticidas en dosis altas y heterogéneas, que seleccionan en los individuos resistentes un único gen con efectos mayores en pocas generaciones (ffrench-Constant et al ., 2004). Por el contrario, en condiciones de laboratorio, con poblaciones más pequeñas y genéticamente menos variables, para poder mantener individuos que sobreviven a las aplicaciones, se usan dosis de insecticidas más bajas y homogéneas, las que seleccionan gradualmente en muchas generaciones varios genes con efectos parciales o menores, los que producen resistencia de tipo poligénica (ffrench-Constant et al ., 2004). Existe debate acerca de la importancia relativa de estas dos formas de selección de resistencia a insecticidas (Groeters y Tabashnik, 2000), aunque las evidencias más recientes desde la genómica tienden a mostrar que incluso la resistencia metabólica se basa sobre cambios en solo un gen del conjunto de genes que existen para cada grupo de enzimas detoxificadoras (ffrench-Constant, 2013).
La dominancia de la expresión fenotípica de la resistencia se evalúa como la resistencia de los genotipos heterocigotos en comparación con los homocigotos resistentes y susceptibles. La dominancia depende de la dosis de insecticida utilizado, así por ejemplo, si se usan dosis bajas, mueren solamente los homocigotos susceptibles y la resistencia es por lo tanto de tipo dominante (heterocigotos sobreviven), mientras que si se usan dosis más altas mueren los homocigotos susceptibles y los heterocigotos, siendo la resistencia de tipo recesivo al sobrevivir solamente los homocigotos resistentes (Roush y McKenzie, 1987; McKenzie, 2001). La dominancia de los genotipos puede ser evaluada comparando las dosis letales que alcanzan una mortalidad determinada, o bien, comparando las mortalidades que se alcanzan con una dosis determinada (Bourguet et al ., 2000). También se puede estimar la dominancia comparando la adecuación biológica frente a una dosis de insecticida determinada. Sin embargo, no necesariamente hay una correlación entre dominancia estimada por la mortalidad y la adecuación biológica frente a una dosis determinada, ya que los heterocigotos que sobreviven a la aplicación pueden reproducirse de igual forma o en menor medida que los homocigotos resistentes, contribuyendo diferencialmente a la siguiente generación (Bourguet et al ., 2000). En la mayoría de los casos la resistencia a insecticidas es de tipo parcialmente dominante (McKenzie, 2001), lo que tiene importantes consecuencias en las estrategias de mitigación de resistencia (Onstad y Guse, 2008).
La resistencia múltiple, en la cual se presentan varios mecanismos de resistencia en el mismo individuo, puede presentar interacciones entre los genes responsables de estos mecanismos. Por ejemplo, puede existir un desequilibrio de ligamiento entre los genes de estos mecanismos de resistencia. Esto indica que los genes están dentro del mismo grupo de ligamiento (cercanos dentro del mismo cromosoma) o bien son seleccionados en conjunto sobre linajes asexuales como en los pulgones plaga (Figueroa et al ., 2018), por lo tanto no recombinan y se asocian en forma no aleatoria. Dependiendo del número de cromosomas y formas de reproducción de las especies de plaga, así como de las presiones de selección de los insecticidas, estas interacciones pueden acelerar o retrasar el desarrollo de resistencia a insecticidas (Onstad y Guse, 2008).
Similarmente, existen factores epigenéticos que pueden regular la expresión de genes de resistencia (Oppold y Müller, 2017). Un ejemplo es la metilación de las EST en el pulgón verde del duraznero ( M. persicae ), la cual permite que linajes asexuales resistentes a insecticidas reviertan su condición a susceptibles (Field y Blackman, 2003).
Los individuos resistentes presentan una mayor adecuación biológica en un ambiente con selección de los insecticidas, pero en general se postula también que los individuos resistentes presentan una menor adecuación biológica en ambientes en que no está presente esta presión de selección. Esto implica que la adquisición de resistencia conlleva costos de adecuación biológica en ambientes donde este carácter no es ventajoso, debido a que los cambios en las proteínas que son blanco o detoxifican a los insecticidas, producen efectos pleiotrópicos negativos en otros caracteres que afectan la adecuación biológica (McKenzie, 2001; Kliot y Ghanim, 2002; Bourguet et al ., 2004). Sin embargo, varios análisis han encontrado que existe variabilidad dependiendo del tipo de resistencia y condiciones ambientales, que hacen que la evidencia disponible no siempre sustente esta hipótesis (Roush y McKenzie, 1987; Coustau et al ., 2000; ffrench-Constant y Bas, 2017). Uno de los casos más estudiados corresponde al pulgón verde del duraznero ( M. persicae ), donde se presentan linajes asexuales con resistencia cruzada o múltiple a diferentes insecticidas que los hace predominantes en cultivos con frecuentes aplicaciones de estos productos. Sin embargo, en cultivos u hospederos silvestres (malezas) sin aplicación de insecticidas, su frecuencia disminuye rápidamente (Foster et al ., 2000, 2002). Se ha demostrado que estos linajes asexuales del pulgón verde del duraznero ( M. persicae ) resistentes a insecticidas presentan menor capacidad de tolerar bajas temperaturas (Foster et al ., 1996, 1997), de defenderse de sus enemigos naturales mediante liberación o respuesta frente a su feromona de alarma (Foster et al ., 1999, 2003, 2005, 2007), o menores tasas de incremento poblacional (Foster et al ., 2003; Fenton et al ., 2010). No obstante, en otros estudios no se han detectado costos en términos metabólicos o reproductivos (Castañeda et al ., 2011). Justamente, la existencia de costos en adecuación biológica de la resistencia a insecticidas es la clave que permite que disminuya su frecuencia al relajarse la presión de selección de los insecticidas. Por el contrario, algunas formas de resistencia a insecticidas que tienen bajos costos en términos de adecuación biológica, pueden permanecer en las poblaciones de plagas una vez relajada la presión de selección. Este es otro aspecto clave de las estrategias de mitigación del desarrollo de resistencia a insecticidas (Roush y McKenzie, 1987; McKenzie, 2001; Onstad y Guse, 2008).
Читать дальше