38 38 Sun, Q.K., Liu, W., Ying, S.A. et al. (2015). 9,10‐Bis(N‐alkylindole‐3‐yl‐vinyl‐2)anthracenes as a new series of alkyl length‐dependent piezofluorochromic aggregation‐induced emission homologues. RSC Advances 5 (89): 73046–73050.
39 39 Xiong, Y., Yan, X.L., Ma, Y.W. et al. (2015). Regulating the piezofluorochromism of 9,10‐bis(butoxystyryl)anthracenes by isomerization of butyl groups. Chemical Communications 51 (16): 3403–3406.
40 40 Liu, W., Wang, Y.L., Sun, M.X. et al. (2013). Alkoxy‐position effects on piezofluorochromism and aggregation‐induced emission of 9, 10‐bis(alkoxystyryl)anthracenes. Chemical Communications 49 (54): 6042–6044.
41 41 Balasaravanan, R. and Siva, A. (2016). Synthesis, characterization and aggregation induced emission properties of anthracene based conjugated molecules. New Journal of Chemistry 40 (6): 5099–5106.
42 42 Chen, J.‐R., Zhao, J., Xu, B.‐J. et al. (2016). An AEE‐active polymer containing tetraphenylethene and 9,10‐distyrylanthracene moieties with remarkable mechanochromism. Chinese Journal of Polymer Science 35 (2): 282–292.
43 43 Duraimurugan, K., Sivamani, J., Sathiyaraj, M. et al. (2016). Piezoflurochromism and aggregation induced emission properties of 9,10‐bis (trisalkoxystyryl) anthracene derivatives. Journal of Fluorescence 26 (4): 1211–1218.
44 44 Qi, Q.K., Li, C., Liu, X.G. et al. (2017). Solid‐state photoinduced luminescence switch for advanced anticounterfeiting and super‐resolution imaging applications. Journal of the American Chemical Society 139 (45): 16036–16039.
45 45 Guan, W.J., Lu, J., Zhou, W.J. et al. (2014). Aggregation‐induced emission molecules in layered matrices for two‐color luminescence films. Chemical Communications 50 (80): 11895–11898.
46 46 Zhang, J.B., Chen, J.L., Xu, B. et al. (2013). Remarkable fluorescence change based on the protonation–deprotonation control in organic crystals. Chemical Communications 49 (37): 3878–3880.
47 47 Ma, S.Q., Zhang, J.B., Liu, Y.J. et al. (2017). Direct observation of the symmetrical and asymmetrical protonation states in molecular crystals. Journal of Physical Chemistry Letters 8 (13): 3068–3072.
48 48 Shao, B., Jin, R.H., Li, A.S. et al. (2019). Luminescent switching and structural transition through multiple external stimuli based on organic molecular polymorphs. Journal of Materials Chemistry C 7 (11): 3263–3268.
49 49 Niu, C.X., You, Y., Zhao, L. et al. (2015). Solvatochromism, reversible chromism and self‐assembly effects of heteroatom‐assisted aggregation‐induced enhanced emission (AIEE) compounds. Chemistry—A European Journal 21 (40): 13983–13990.
50 50 Dong, Y.J., Xu, B., Zhang, J.B. et al. (2012). Supramolecular interactions induced fluorescent organic nanowires with high quantum yield based on 9,10‐distyrylanthracene. Crystengcomm 14 (20): 6593–6598.
51 51 Wu, D.‐E., Wang, M.‐N., Luo, Y.‐H. et al. (2017). Tuning the structures and photophysical properties of 9,10‐distyrylanthrance (DSA) via fluorine substitution. New Journal of Chemistry 41 (10): 4220–4233.
52 52 Wu, D.‐E., Wang, M.‐N., Luo, Y.‐H. et al. (2015). Influence of halogen atoms on the structures and photophysical properties of 9,10‐distyrylanthracene (DSA). CrystEngComm 17 (47): 9228–9239.
53 53 Zhang, J.B., Ma, S.Q., Fang, H.H. et al. (2017). Insights into the origin of aggregation enhanced emission of 9,10‐distyrylanthracene derivatives. Materials Chemistry Frontiers 1 (7): 1422–1429.
54 54 Chen, J.L., Ma, S.Q., Xu, B. et al. (2013). Molecular crystals based on 9,10‐distyrylanthracene derivatives with high solid state fluorescence efficiency and uniaxial orientation induced by supramolecular interactions. Chinese Science Bulletin 58 (22): 2747–2752.
55 55 Wang, L.J., Xu, B., Zhang, J.B. et al. (2013). Theoretical investigation of electronic structure and charge transport property of 9,10‐distyrylanthracene (DSA) derivatives with high solid‐state luminescent efficiency. Physical Chemistry Chemical Physics 15 (7): 2449–2458.
56 56 Zhang, J.B., Xu, B., Chen, J.L. et al. (2014). An organic luminescent molecule: What will happen when the “butterflies” come together? Advanced Materials 26 (5): 739–745.
57 57 Li, A.S., Liu, Y.J., Han, L. et al. (2019). Pressure‐induced remarkable luminescence‐changing behaviours of 9,10‐distyrylanthracene and its derivatives with distinct substituents. Dyes and Pigments 161: 182–187.
58 58 Chen, J.L., Ma, S.Q., Zhang, J.B. et al. (2015). Low‐loss optical waveguide and highly polarized emission in a uniaxially oriented molecular crystal based on 9,10‐distyrylanthracene derivatives. Acs Photonics 2 (2): 313–318.
59 59 Liu, Y.J., Ma, S.Q., Xu, B. et al. (2017). Construction and function of a highly efficient supramolecular luminescent system. Faraday Discussions 196: 219–229.
60 60 Song, N., Chen, D.‐X., Xia, M.‐C. et al. (2015). Supramolecular assembly‐induced yellow emission of 9,10‐distyrylanthracene bridged bis(pillar[5]arene)s. Chemical Communications 51 (25): 5526–5529.
61 61 Zhang, J.B., Xu, B., Chen, J.L. et al. (2013). Oligo(phenothiazine)s: Twisted intramolecular charge transfer and aggregation‐induced emission. Journal of Physical Chemistry C 117 (44): 23117–23125.
62 62 Xu, B., Zhang, J.B., Fang, H.H. et al. (2014). Aggregation induced enhanced emission of conjugated dendrimers with a large intrinsic two‐photon absorption cross‐section. Polymer Chemistry 5 (2): 479–488.
63 63 Srujana, P. and Radhakrishnan, T.P. (2018). Impact of molecular orientation on fluorescence emission enhancement in aggregates. Materials Chemistry Frontiers 2 (4): 632–634.
64 64 Chandaluri, C.G. and Radhakrishnan, T.P. (2012). Amorphous‐to‐crystalline transformation with fluorescence enhancement and switching of molecular nanoparticles fixed in a polymer thin film. Angewandte Chemie‐International Edition 51 (47): 11849–11852.
65 65 Srujana, P. and Radhakrishnan, T.P. (2015). Extensively reversible thermal transformations of a bistable, fluorescence‐switchable molecular solid: Entry into functional molecular phase‐change materials. Angewandte Chemie‐International Edition 54 (25): 7270–7274.
66 66 Srujana, P., Gera, T., and Radhakrishnan, T.P. (2016). Fluorescence enhancement in crystals tuned by a molecular torsion angle: A model to analyze structural impact. Journal of Materials Chemistry C 4 (27): 6510–6515.
67 67 Srujana, P. and Radhakrishnan, T.P. (2018). Establishing the critical role of oriented aggregation in molecular solid state fluorescence enhancement. Chemistry—A European Journal 24 (8): 1784–1788.
68 68 Demchenko, A.P. (2010). The concept of lambda‐ratiometry in fluorescence sensing and imaging. Journal of Fluorescence 20 (5): 1099–1128.
69 69 Lee, D.E., Koo, H., Sun, I.C. et al. (2012). Multifunctional nanoparticles for multimodal imaging and theragnosis. Chemical Society Reviews 41 (7): 2656–2672.
70 70 Zhang, X.Y., Zhang, X.Q., Yang, B. et al. (2014). Aggregation‐induced emission dye based luminescent silica nanoparticles: Facile preparation, biocompatibility evaluation and cell imaging applications. RSC Advances 4 (20): 10060–10066.
71 71 Zhang, X.Q., Zhang, X.Y., Wang, S.Q. et al. (2013). Surfactant modification of aggregation‐induced emission material as biocompatible nanoparticles: Facile preparation and cell imaging. Nanoscale 5 (1): 147–150.
72 72 Kim, S., Ohulchanskyy, T.Y., Pudavar, H.E. et al. (2007). Organically modified silica nanoparticles co‐encapsulating photosensitizing drug and aggregation‐enhanced two‐photon absorbing fluorescent dye aggregates for two‐photon photodynamic therapy. Journal of the American Chemical Society 129 (9): 2669–2675.
Читать дальше