24 24 Li, Z., Dong, Y. Q., Lam, J. W. Y. et al. (2009) Functionalized siloles: versatile synthesis, aggregation‐induced emission, and sensory and device applications. Advanced Functional Materials 19 (6): 905–917.
25 25 Nie, H., Chen, B., Zeng, J. et al. (2018) Excellent n‐type light emitters based on AIE‐active silole derivatives for efficient simplified organic light‐emitting diodes. Journal of Materials Chemistry C 6 (14): 3690–3698.
26 26 Liu, G., Chen, D., Kong, L. et al. (2015) Red fluorescent luminogen from pyrrole derivatives with aggregation‐enhanced emission for cell membrane imaging. Chemical Communications 51 (40): 8555–8558.
27 27 Li, K., Liu, Y., Li, Y. et al. (2017) 2,5‐bis(4‐alkoxycarbonylphenyl)‐1,4‐diaryl‐1,4‐dihydropyrrolo[3,2‐b]pyrrole (AAPP) AIEgens: tunable RIR and TICT characteristics and their multifunctional applications. Chemical Science 8 (10): 7528–7267.
28 28 Nie, H., Hu, K., Cai, Y. et al. (2017) Tetraphenylfuran: aggregation‐induced emission or aggregation‐caused quenching? Materials Chemistry Frontiers 1 (6): 1125–1129.
29 29 Guo, J., Hu, S., Luo, W. et al. (2017) A novel aggregation‐induced emission platform from 2,3‐diphenylbenzo[b]thiophene S,S‐dioxide. Chemical Communications 53 (9): 1463–1466.
30 30 Gao, Y., Feng. G., Jiang, T. et al. (2015) Biocompatible nanoparticles based on diketo‐pyrrolo‐pyrrole (DPP) with aggregation‐induced red/NIR emission for in vivo two‐photon fluorescence imaging Advanced Functional Materials 25 (19): 2857–2866.
31 31 Zhao, Z., He, B. and Tang, B. Z. (2015) Aggregation‐induced emission of siloles. Chemical Science 6 (10): 5347–5365.
32 32 Feng, X., Tong, B., Shen, J. et al. (2010) Aggregation‐induced emission enhancement of aryl‐substituted pyrrole derivatives. The Journal of Physical Chemistry B 114 (50): 16731–16736.
33 33 Chen, M., Li, L., Nie, H. et al. (2015) Tetraphenylpyrazine‐based AIEgens: facile preparation and tunable light emission. Chemical Science 6 (3): 1932–1937.
34 34 Chen, M., Li, L., Wu, H. et al. (2018) Unveiling the different emission behavior of polytriazoles constructed from pyrazine‐based AIE monomers by click polymerization. ACS Applied Materials & Interfaces 10 (15): 12181–12188.
35 35 Zhang, J., Liu, Q., Wu, W. et al. (2019) Real‐time monitoring of hierarchical self‐assembly and induction of circularly polarized luminescence from achiral luminogens. ACS Nano 13 (3): 3618–3628.
36 36 Pan, L., Luo, W., Chen, M. et al. (2016) Tetraphenylpyrazine‐based luminogens with aggregation‐enhanced emission characteristics: preparation and property. Chinese Journal of Organic Chemistry 36 (6): 1316–1324.
37 37 Han, M., Chen, M., Ebendorff‐Heidepriem, H. et al. (2016) An optical fibre sensor for remotely detecting water traces in organic solvents. RSC Advances 6 (85): 82186–82190.
38 38 Chen, M., Hu, X., Liu, J. et al. (2018) Rational design of red AIEgens with a new core structure from non‐emissive heteroaromatics. Chemical Science 9 (40): 7829–7834.
39 39 Chen, M., Li, L., Nie, H. et al. (2015) N‐type pyrazine and triazole‐based luminogens with aggregation‐enhanced emission characteristics. Chemical Communications 51 (53): 10710–10713.
40 40 Laurent, A. (1845) Ueber die Einwirkung von Jod auf xanthogensaures Kali. Journal für praktische Chemie 36 (1): 352–362.
41 41 Erdmann, J. (1865) Ann. 135: 181.
42 42 Japp, F. R. and Wilson, W. H. (1886) On ammonia‐derivatives of benzoin. Journal of the Chemical Society 49: 825–831.
43 43 Davidson, D., Weiss, M. and Jelling, M. (1937) The action of ammonia on benzoin. The Journal of Organic Chemistry 2 (4): 328–334.
44 44 Dong, Y., Lam, J. W. Y., Qin, A. et al. (2007) Aggregation‐induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light‐emitting diodes. Applied Physical Letters 91 (1): 011111.
45 45 Tamaddon, F. and Tafti, D. A. (2016) SnCl2·H2O‐catalyzed solvent‐free synthesis of α‐amino ketones and tetrasubstituted pyrazines. Synlett 27 (15): 2217–2220.
46 46 Tamaddon, F., Tafti, D. A. and Pooramini, F. (2016) An improved synthesis of multi‐substituted pyrazines under calalyst‐ and solvent‐free conditions. Synthesis 48 (23): 4295–4299.
47 47 Khafizova, L. O., Shaibakova, M. G. and Dzhemilev, U. M. (2018) A new one‐pot synthesis of tetrasubstituted pyrazines by the Ti‐catalyzed reaction of aromatic and benzyl‐substituted nitriles with EtAlCl2. Chemistryselect 3 (41): 11451–11453.
48 48 Ganji, P. and Leeuwen, P. W. N. M. van (2017) Phosphine supported ruthenium nanoparticle catalyzed synthesis of substituted pyrazines and imidazoles from α‐diketones. The Journal of Organic Chemistry 82 (3): 1768–1774.
49 49 Petrosyan, A., Ehlers, P., Reimann, S. et al. (2015) Synthesis of tetraaryl‐ and tetraalkenylpyrazines by Suzuki–Miyaura reactions of tetrachloropyrazine. Tetrahedron 71 (38): 6803–6812.
50 50 Chen, M., Nie, H., Song, B. et al. (2016) Triphenylamine‐functionalized tetraphenylpyrazine: facile preparation and multifaceted functionalities. Journal of Materials Chemistry C 4 (14): 2901–2908.
51 51 Wu, H., Luo, J., Xu, Z. et al. (2020) Uncommon intramolecular charge transfer effect and its potential application in OLED emitters. Chemical Research in Chinese Universities 36 (1): 61–67.
52 52 Wu, H., Pan, Y., Zeng, J. et al. (2019) Novel strategy for constructing high efficiency OLED emitters with excited state quinone‐conformation induced planarization process. Advanced Optical Materials 7 (18): 1900283.
53 53 Chen, Y., Zhu, C., Yang, Z. et al. (2013) A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria. Angewandte Chemie International Edition 52 (6): 1688–1691.
54 54 Chen, M., Chen, R., Shi, Y. et al. (2018) Malonitrile‐functionalized tetraphenylpyrazine: aggregation‐induced emission, ratiometric detection of hydrogen sulfide, and mechanochromism. Advanced Functional Materials 28 (6): 1704689.
55 55 Chen, M., Liu, J., Liu, F. et al. (2019) Tailoring the molecular properties with isomerism effect of AIEgens. Advanced Functional Materials 29 (37): 1903834.
56 56 Zhang, G. and Mastalerz, M. (2014) Organic cage compounds‐from shape‐persistency to function. Chemical Society Reviews 43 (6): 1934–1947.
57 57 Feng, H, Zheng, X. Gu, X. et al. (2018) White‐light emission of a binary light‐harvesting platform based on an amphiphilic organic cage. Chemistry of Materials 30 (4): 1285–1290.
58 58 Yaghi, O. M., Li, G. and Li, H. (1995) Selective binding and removal of guests in a microporous metal–organic framework. Nature 378: 703–706.
59 59 Li, Q., Ma, Z., Zhang, W. et al. (2016) AIE‐active tetraphenylethene functionalized metal–organic framework for selective detection of nitroaromatic explosives and organic photocatalysis. Chemical Communications 52 (75): 11284–11287.
60 60 Tao, C., Chen, B., Liu, X. et al. (2017) A highly luminescent entangled metal–organic framework based on pyridine‐substituted tetraphenylethene for efficient pesticide detection. Chemical Communications 53 (72): 9975–9978.
61 61 Yin, H., Wang, X. and Yin, X. (2019) Rotation restricted emission and antenna effect in single metal–organic frameworks. Journal of the American Chemistry Society 141 (38): 15166–15173.
2 AIEgens Based on 9,10‐Distyrylanthracene (DSA): From Small Molecules to Macromolecules
Leijing Liu, Bin Xu, and Wenjing Tian
State Key Laboratory for Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
Organic functional materials have shown great application prospects in human life, medical science, national defense, and other fields due to their unique electronic structure and performance and have become a new interdisciplinary frontier research field [1–3].
Читать дальше