Anthony R. West - Solid State Chemistry and its Applications

Здесь есть возможность читать онлайн «Anthony R. West - Solid State Chemistry and its Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Solid State Chemistry and its Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Solid State Chemistry and its Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

SOLID STATE CHEMISTRY AND ITS APPLICATIONS
A comprehensive treatment of solid state chemistry complete with supplementary material and full colour illustrations from a leading expert in the field. Solid State Chemistry and its Applications, Second Edition
Student Edition
Significant updates and new content in this second edition include:
A more extensive overview of important families of inorganic solids including spinels, perovskites, pyrochlores, garnets, Ruddlesden-Popper phases and many more New methods to synthesise inorganic solids, including sol-gel methods, combustion synthesis, atomic layer deposition, spray pyrolysis and microwave techniques Advances in electron microscopy, X-ray and electron spectroscopies New developments in electrical properties of materials, including high Tc superconductivity, lithium batteries, solid oxide fuel cells and smart windows Recent developments in optical properties, including fibre optics, solar cells and transparent conducting oxides Advances in magnetic properties including magnetoresistance and multiferroic materials Homogeneous and heterogeneous ceramics, characterization using impedance spectroscopy Thermoelectric materials, MXenes, low dimensional structures, memristors and many other functional materials Expanded coverage of glass, including metallic and fluoride glasses, cement and concrete, geopolymers, refractories and structural ceramics Overview of binary oxides of all the elements, their structures, properties and applications Featuring full color illustrations throughout, readers will also benefit from online supplementary materials including access to CrystalMaker® software and over 100 interactive crystal structure models.
Perfect for advanced students seeking a detailed treatment of solid state chemistry, this new edition of
will also earn a place as a desk reference in the libraries of experienced researchers in chemistry, crystallography, physics, and materials science.

Solid State Chemistry and its Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Solid State Chemistry and its Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Each O has two Ti as its nearest cationic neighbours, at 1.953 Å, and four Sr, coplanar with O at 2.76 Å. However, eight other oxygens are at the same distance, 2.76 Å, as the four Sr. It is debatable whether the O coordination number is best regarded as two (linear) or as six (a grossly squashed octahedron with two short and four long distances) or as 14 (six cations and eight oxygens). No firm recommendation is made!

Having arrived at the unit cell of SrTiO 3, the atomic coordinates, coordination numbers and bond distances, we now wish to view the structure on a rather larger scale and ask the following questions. Does it have cp anions? Is it a framework structure? Answers are as follows.

Perovskite does not contain cp oxide ions as such but O and Sr, considered together, do form a ccp array with the layers parallel to the {111} planes, Fig. 1.41(c) and (e). To see this, compare the perovskite structure with Sr at the origin, (d), with that of NaCl (Fig. 1.2). The latter contains Cl (or Na, depending on the choice of origin) at the corner and face centre positions of the cell and is ccp . By comparison, perovskite contains O at the face centres and Sr at the corner. The structure of the mixed Sr, O cp layers in perovskite is such that one‐quarter of the atoms are Sr, arranged in a regular fashion, Fig. 1.41(e). It is quite common for fairly large cations, such as Sr 2+( r = 1.1 Å), to play apparently different roles in different structures, i.e. as 12‐coordinate packing ions, as in SrTiO 3perovskite, or as octahedrally coordinated cations within a cp oxide array, as in SrO (rock salt structure).

The formal relation between rock salt and perovskite also includes the Na and Ti cations as both occupy octahedral sites: in NaCl, all octahedral sites are occupied (corners and face centres), but in perovskite only one‐quarter [the corner sites in (a)] are occupied. The other octahedral sites at the face centres (c) have oxygen atoms at four corners but Sr at the other two corners and therefore, these sites are rarely occupied in perovskite-related structures.

Figure 141 ad The perovskite structure of SrTiO3 e A close packed Sr O - фото 145 Figure 141 ad The perovskite structure of SrTiO3 e A close packed Sr O - фото 146

Figure 1.41 (a–d) The perovskite structure of SrTiO3. (e) A close packed Sr, O layer. (f) A layer of corner‐sharing octahedra. (g) GdFeO3 structure. (h) Structure of tetragonal BaTiO3 projected onto the ac plane. Note, the origin of the unit cell is shifted to coincide with Ba rather than with Ti as in (b).

Adapted with permission from M. T. Weller, Inorganic Materials Chemistry, © 1994 Oxford University Press.

(i) Coupled rotation of octahedra in 2D corner‐sharing sheets. (j, k) View looking down the c axis of a0a0c– and a0a0c+ with the A‐site cations shown as spheres and the B‐site cations located at the centre of the octahedra.

Based on M. W. Lufaso and P. M. Woodward, Acta Cryst. Sect. B Struct. Sci. 57, 725 (2001).

Perovskite is also regarded as a framework structure with corner‐sharing TiO 6octahedra and with Sr in 12‐coordinate interstices. The octahedral coordination of one Ti is shown in Fig. 1.41(c) and (d); each O of this octahedron is shared with one other octahedron, such that the Ti–O–Ti arrangement is linear. Thus, octahedra link at their corners to form sheets (f), and neighbouring sheets link similarly to form a 3D framework.

Several hundred oxides and halides form the perovskite structure; a selection is given in Table 1.18. The oxides contain two cations whose combined oxidation state is six. Thus, possible combinations are +I, +V as in KNbO 3, +II, +IV as in CaTiO 3and +III, +III as in LaGaO 3. The 12‐coordinate A site cations are, of course, much larger than the six‐coordinate B site cations.

As well as the cubic perovskite structure, described so far, a variety of distorted, non‐cubic structures exist. These lower‐symmetry structures often form on cooling the high‐temperature cubic structure and the framework of octahedra may be slightly twisted or distorted. An example is shown in Fig. 1.41(g) for the structure of GdFeO 3. The reasons for the structural distortions are associated with the size requirements of the 12‐coordinate A and six‐coordinate B sites and whether adjustments to the structure are required to accommodate different‐sized cations. Also, more complex perovskite structures form in which two different cations may occupy either the A or B sites, giving a range of cation ordering possibilities.

1.17.7.1 Tolerance factor

The reason why structural distortions occur in many perovskites is that the A and/or B atoms are not exactly the right size to fit the sites generated by the remainder of the structure. In an oxide with the ideal, cubic perovskite structure, the bond lengths are related to the unit cell dimension, a, by

(1.6) Since bond lengths for each element oxidation state and coordination number - фото 147

Since bond lengths for each element, oxidation state and coordination number usually fall within closely defined ranges ( Appendix F), it is possible to use equation (1.6)to see how well the sizes of a particular A, B combination meet the requirements for an undistorted, ideal perovskite. The degree to which the sizes depart from equation (1.6)is given by a tolerance factor, t:

Table 1.18 Some compounds with the perovskite structure

Compound a /Å Compound a /Å Compound a /Å
KNbO 3 4.007 LaFeO 3 3.920
KTaO 3 3.9885 LaGaO 3 3.875 CsCaF 3 4.522
KIO 3 4.410 LaVO 3 3.99 CsCdBr 3 5.33
NaNbO 3 3.915 SrTiO 3 3.9051 CsCdCl 3 5.20
NaWO 3 3.8622 SrZrO 3 4.101 CsHgBr 3 5.77
LaCoO 3 3.824 SrHfO 3 4.069 CsHgCl 3 5.44
LaCrO 3 3.874 SrSnO 3 4.0334

(1.7) Solid State Chemistry and its Applications - изображение 148

In practice, there is some flexibility over bond lengths and usually, a cubic perovskite forms with t in the range 0.9 < t < 1.0.

For t > 1, the B site is larger than required. If t is only slightly greater than 1.0, the structure distorts but is still basically a perovskite as in BaTiO 3, t = 1.06. There may also be a change in the stacking sequence of the AX 3close packed layers from ccp to hcp to give the family of hexagonal perovskites typified by BaNiO 3. For larger departures from t = 1.0, however, the B ion demands a smaller site, of lower coordination number, and the structure changes completely, as in BaSiO 3which has tetrahedral Si.

For smaller tolerance factors, 0.85 < t < 0.90, several different kinds of structural distortion occur because now, as in GdFeO 3, the A cation is too small for its site. These distortions generally involve tilting and rotation of the BO 6octahedra as shown in Fig. 1.41(g). Consequently some, or all, of the B–O–B linkages are no longer linear but are zig‐zag, which has the effect of reducing the size of the A cation site.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Solid State Chemistry and its Applications»

Представляем Вашему вниманию похожие книги на «Solid State Chemistry and its Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Solid State Chemistry and its Applications»

Обсуждение, отзывы о книге «Solid State Chemistry and its Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x