Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Здесь есть возможность читать онлайн «Savo G. Glisic - Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ARTIFICIAL INTELLIGENCE AND QUANTUM COMPUTING FOR ADVANCED WIRELESS NETWORKS
A practical overview of the implementation of artificial intelligence and quantum computing technology in large-scale communication networks Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Artificial Intelligence and Quantum Computing for Advanced Wireless Networks

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Then, we can use the “indicator” method to encode the function m ( p , q ) = ( i l, j l, d l) into M . That is, for any possible element in M , its row index x determines a( p , q ) pair, and its column index y determines a( i l, j l, d l) triplet, and M is defined as

(3.95) The M matrix is very high dimensional At the same time it is also very - фото 341

The M matrix is very high dimensional. At the same time, it is also very sparse: there is only one nonzero entry in the H l W l D lelements in one row, because m is a function. M , which uses information [A, B, C.1], encodes only the one‐to‐one correspondence between any element in φ( x l) and any element in x l; it does not encode any specific value in x l. Putting together the one‐to‐one correspondence information in M and the value information in x l, we have

(3.96) Supervision signal for the previous layer In the l th layer we need to - фото 342

Supervision signal for the previous layer : In the l ‐th layer, we need to compute ∂z /∂vec( x l). For that, we want to reshape x linto a matrix Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 343, and use these two equivalent forms (modulo reshaping) interchangeably. By the chain rule, ∂z / (vec( x l) T) = [ ∂z / (vec( y ) T)][∂vec( y )/ (vec( x l) T)].

By utilizing Eqs. (3.90)and (3.96), we have

(3.97) 398 Since by using Eq 388 399 - фото 344

(3.98) Since by using Eq 388 399 we have 3100 - фото 345

Since by using Eq. (3.88)

(3.99) we have 3100 or equivalently 3101 - фото 346

we have

(3.100) or equivalently 3101 In Eq 3101 and v - фото 347

or equivalently

(3.101) In Eq 3101 and vec z Y F T is a vector in - фото 348

In Eq. (3.101), Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 349, and vec(( ∂z / ∂Y ) F T) is a vector in Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 350. At the same time, M Tis an indicator matrix in In order to locate one element in vec x l or one row in M T we need an index - фото 351In order to locate one element in vec( x l) or one row in M T, we need an index triplet ( i l, j l, d l), with 0 ≤ i l< H l, 0 ≤ j l< W l, and 0 ≤ d l< D l. Similarly, to locate a column in M Tor an element in ∂z / ∂Y ) F T, we need an index pair p , q ), with 0≤ p < H l + 1 W l + 1and ≤ q < HW D l. Thus, the ( i l, j l, d l)‐th entry of ∂z / (vec( x l)) is the product of two vectors: the row in M T(or the column in M ) that is indexed by ( i l, j l, d l), and vec(( ∂z / ∂Y ) F T). Since M Tis an indicator matrix, in the row vector indexed by ( i l, j l, d l), only those entries whose index ( p , q ) satisfies m ( p , q ) = ( i l, j l, d l) have a value 1, and all other entries are 0. Thus, the ( i l, j l, d l)‐th entry of ∂z / (vec( x l)) equals the sum of these corresponding entries in vec(( ∂z / ∂Y ) F T). Therefore, we get the following succinct equation:

(3.102) In other words to compute z X we do not need to explicitly use the - фото 352

In other words, to compute ∂z / ∂X , we do not need to explicitly use the extremely high‐dimensional matrix M . Instead, Eqs. (3.102)and (3.84)can be used to efficiently find it. The convolution example from Figure 3.23is used to illustrate the inverse mapping m −1in Figure 3.25.

In the right half of Figure 3.25, the 6 × 4 matrix is ∂z / ∂Y ) F T. In order to compute the partial derivative of z with respect to one element in the input X , we need to find which elements in ∂z / ∂Y ) F Tare involved and add them. In the left half of Figure 3.25, we see that the input element 5 (shown in larger font) is involved in four convolution operations, shown by the gray, light gray, dotted gray and black boxes, respectively. These four convolution operations correspond to p = 1, 2, 3, 4. For example, when p = 2 (the light gray box), 5 is the third element in the convolution, and hence q = 3 when p = 2, and we put a light gray circle in the (2, 3)‐th element of the ( ∂z / ∂Y ) F Tmatrix. After all four circles are put in the matrix ( ∂z / ∂Y ) F T,the partial derivative is the sum of ellements in these four locations of ( ∂z / ∂Y ) F T. The set m −1( i l, j l, d l) contains at most HWD lelements. Hence, Eq. (3.102)requires at most HWD lsummations to compute one element of ∂z / ∂X .

The pooling layer : Let Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - изображение 353be the input to the l ‐th layer, which is now a pooling layer. The pooling operation requires no parameter (i.e., w iis null, and hence parameter learning is not needed for this layer). The spatial extent of the pooling ( H × W ) is specified in the design of the CoNN structure. Assume that H divides H land W divides W land the stride equals the pooling spatial extent, the output of pooling ( y or equivalently x l + 1) will be an order‐3 tensor of size H l + 1× W l + 1× D l + 1, with H l + 1= H l/ H , W l + 1= W l/ W , D l + 1= D l. A pooling layer operates upon x lchannel by channel independently. Within each channel, the matrix with HW lelements is divided into H l + 1× W l + 1nonoverlapping subregions, each subregion being H × W in size. The pooling operator then maps a subregion into a single number. Two types of pooling operators are widely used: max pooling and average pooling. In max pooling, the pooling operator maps a subregion to its maximum value, while the average pooling maps a subregion to its average value as illustrated in Figure 3.26.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Представляем Вашему вниманию похожие книги на «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks»

Обсуждение, отзывы о книге «Artificial Intelligence and Quantum Computing for Advanced Wireless Networks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x