61 61Herrera-Herrera, A.V., Hernández-Borges, J., Afonso, M.M., Palenzuela, J.A., and Rodríguez-Delgado, M.Á. (2013). Comparison between magnetic and non magnetic multi-walled carbon nanotubes-dispersive solid-phase extraction combined with ultra-high performance liquid chromatography for the determination of sulfonamide antibiotics in water samples. Talanta 116: 695–703. doi: 10.1016/j.talanta.2013.07.060.
62 62Li, J., Ren, X., Diao, Y., Chen, Y., Wang, Q., and Jin, W. (2018). Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 257: 259–264. doi: 10.1016/j.foodchem.2018.02.144.
63 63 Jakubus, A., Gromelski, M., Jagiello, K., Puzyn, T., Stepnowski, P., and Paszkiewicz, M. (2019). Dispersive solid-phase extraction using multi-walled carbon nanotubes combined with liquid chromatography–mass spectrometry for the analysis of β-blockers: Experimental and theoretical studies. Microchem. J. 146: 258–269. doi: 10.1016/j.microc.2018.12.063.
64 64Tsai, W.H., Huang, T.C., Huang, J.J., Hsue, Y.H., and Chuang, H.Y. (2009). Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection. J. Chromatogr. A 1216(12): 2263–2269. doi: 10.1016/j.chroma.2009.01.034.
65 65Vera-Candioti, L., Gil García, M.D., Martínez Galera, M., and Goicoechea, H.C. (2008). Chemometric assisted solid-phase microextraction for the determination of anti-inflammatory and antiepileptic drugs in river water by liquid chromatography-diode array detection. J. Chromatogr. A 1211(1–2): 22–32. doi: 10.1016/j.chroma.2008.09.093.
66 66Bratkowska, D., Fontanals, N., Cormack, P.A.G., Borrull, F., and Marcé, R.M. (2012). Preparation of a polar monolithic stir bar based on methacrylic acid and divinylbenzene for the sorptive extraction of polar pharmaceuticals from complex water samples. J. Chromatogr. A 1225: 1–7. doi: 10.1016/j.chroma.2011.12.064.
67 67Assis, R.C., Mageste, A.B., de Lemos, L.R., Orlando, R.M., and Rodrigues, G.D. (2020). Application of aqueous two-phase systems for the extraction of pharmaceutical compounds from water samples. J. Mol. Liq. 301: 112411. doi: 10.1016/j.molliq.2019.112411.
68 68 Sadkowska, J., Caban, M., Chmielewski, M., Stepnowski, P., and Kumirska, J. (2019). The use of gas chromatography for determining pharmaceutical residues in clinical, cosmetic, food and environmental samples in the light of the requirements of sustainable development. Arch. Environ. Prot. 45(1): 42–49. doi: 10.24425/aep.2019.124829.
69 69Caban, M., Migowska, N., Stepnowski, P., Kwiatkowski, M., and Kumirska, J. (2012). Matrix effects and recovery calculations in analyses of pharmaceuticals based on the determination of β-blockers and β-agonists in environmental samples. J. Chromatogr. A 1258: 117–127. doi: 10.1016/j.chroma.2012.08.029.
70 70Caban, M., Czerwicka, M., Łukaszewicz, P., Migowska, N., Stepnowski, P., Kwiatkowski, M., and Kumirska, J. (2013). A new silylation reagent dimethyl(3,3,3-trifluoropropyl)silyldiethylamine for the analysis of estrogenic compounds by gas chromatography-mass spectrometry. J. Chromatogr. A 1301: 215–224. doi: 10.1016/j.chroma.2013.05.073.
71 71Evershed, R. (1993). Advances in silylation. In: Handbook of Derivatives for Chromatography, 2nd (ed. K. Blau and J.M. Halket), 51–108. London: Wiley.
72 72Kumirska, J., Plenis, A., Łukaszewicz, P., Caban, M., Migowska, N., Białk-Bielińska, A., Czerwicka, M., and Stepnowski, P. (2013). Chemometric optimization of derivatization reactions prior to gas chromatography – mass spectrometry analysis. J. Chromatogr. A 1296: 164–178. doi: 10.1016/j.chroma.2013.04.079.
73 73Caban, M., Stepnowski, P., Kwiatkowski, M., Migowska, N., and Kumirska, J. (2011). Determination of β-blockers and β-agonists using gas chromatography and gas chromatography – mass spectrometry – a comparative study of the derivatization step. J. Chromatogr. A 1218(44): 8110–8122. doi: 10.1016/j.chroma.2011.08.093.
74 74Caban, M., Mioduszewska, K., Łukaszewicz, P., Migowska, N., Stepnowski, P., Kwiatkowski, M., and Kumirska, J. (2014). A new silylating reagent – dimethyl(3,3,3-trifluoropropyl)silyldiethylamine – for the derivatisation of non-steroidal anti-inflammatory drugs prior to gas chromatography-mass spectrometry analysis. J. Chromatogr. A 1346: 107–116. doi: 10.1016/j.chroma.2014.04.054.
75 75Migowska, N., Stepnowski, P., Paszkiewicz, M., Gołębiowski, M., and Kumirska, J. (2010). Trimethylsilyldiazomethane (TMSD) as a new derivatization reagent for trace analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) by gas chromatography methods. Anal. Bioanal. Chem. 397(7): 3029–3034. doi: 10.1007/s00216-010-3853-y.
76 76Caban, M. and Stepnowski, P. (2018). Silylation of acetaminophen by trifluoroacetamide-based silylation agents. J. Pharm. Biomed. Anal. 154: 433–437. doi: 10.1016/j.jpba.2018.03.037.
77 77Caban, M. and Stepnowski, P. (2020). The application of isotopically labeled analogues for the determination of small organic compounds by GC/MS with selected ion monitoring. Anal. Methods 12(30): 3854–3864. doi: 10.1039/D0AY00723D.
78 78Evans, S.E. and Kasprzyk-Hordern, B. (2014). Applications of chiral chromatography coupled with mass spectrometry in the analysis of chiral pharmaceuticals in the environment. Trends Environ. Anal. Chem. 1: 34–51. doi: 10.1016/j.teac.2013.11.005.
79 79Guitart, C. and Readman, J.W. (2010). Critical evaluation of the determination of pharmaceuticals, personal care products, phenolic endocrine disrupters and faecal steroids by GC/MS and PTV-GC/MS in environmental waters. Anal. Chim. Acta 658(1): 32–40. doi: 10.1016/j.aca.2009.10.066.
80 80Huang, S., Zhu, F., Jiang, R., Zhou, S., Zhu, D., Liu, H., and Ouyang, G. (2015). Determination of eight pharmaceuticals in an aqueous sample using automated derivatization solid-phase microextraction combined with gas chromatography-mass spectrometry. Talanta 136: 198–203. doi: 10.1016/j.talanta.2014.11.071.
81 81Aspromonte, J., Wolfs, K., and Adams, E. (2019). Current application and potential use of GC × GC in the pharmaceutical and biomedical field. J. Pharm. Biomed. Anal. 176: 112817. doi: 10.1016/j.jpba.2019.112817.
82 82Caban, M., Białk-Bielińska, A., Stepnowski, P., and Kumirska, J. (2016). Current issues in pharmaceutical residues in drinking water. Curr. Anal. Chem. 12(3): 1–9. doi: 10.2174/1573411012666151009194401.
83 83Świacka, K., Szaniawska, A., and Caban, M. (2019). Evaluation of bioconcentration and metabolism of diclofenac in mussels Mytilus trossulus – laboratory study. Mar. Pollut. Bull. 141: 249–255. doi: 10.1016/j.marpolbul.2019.02.050.
84 84Rosal, R., Rodríguez, A., Perdigón-Melón, J.A., Petre, A., García-Calvo, E., Gómez, M.J., Agüera, A., and Fernández-Alba, A.R. (2010). Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res. 44(2): 578–588. doi: 10.1016/j.watres.2009.07.004.
85 85 Boyd, G.R., Palmeri, J.M., Zhang, S., and Grimm, D.A. (2004). Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in stormwater canals and Bayou St. John in New Orleans, Louisiana, USA. Sci. Total Environ. 333: 137–148. doi: 10.1016/j.scitotenv.2004.03.018.
86 86Kołecka, K., Gajewska, M., Stepnowski, P., and Caban, M. (2019). Spatial distribution of pharmaceuticals in conventional wastewater treatment plant with Sludge Treatment Reed Beds technology. Sci. Total Environ. 647: 149–157. doi: 10.1016/j.scitotenv.2018.07.439.
87 87Tran, N.H., Chen, H., Do, T.V., Reinhard, M., Ngo, H.H., He, Y., and Yew-Hoong Gin, K. (2016). Simultaneous analysis of multiple classes of antimicrobials in environmental water samples using SPE coupled with UHPLC-ESI-MS/MS and isotope dilution. Talanta 159: 163–173. doi: 10.1016/j.talanta.2016.06.006.
Читать дальше