94 94Nieminen, J.O.and Ilmoniemi, R.J. (2010). Solving the problem of concomitant gradients in ultra-low-field MRI. Journal of Magnetic Resonance 207 (2): 213–219.
95 95Hayashi, N., Watanabe, Y., Masumoto, T.et al. (2004). Utilization of low-field MR scanners. Magnetic Resonance in Medical Sciences 3 (1): 27–38.
96 96Wald, L.L. (2019). Ultimate MRI. Journal of Magnetic Resonance 306: 139–144.
97 97Lvovsky, Y., Stautner, E.W., and Zhang, T. (2013). Novel technologies and configurations of superconducting magnets for MRI. Superconductor Science and Technology 26: 093001).
98 98Iwasa, Y. (2017). Toward liquid-helium-free, persistent-mode MgB2 MRI magnets: FBML experience. Superconducting Science and Technology 30 (5): 053001.
99 99Baig, T., Al Amin, A., Deissler, R.J.et al. (2017). Conceptual designs of conduction cooled MgB2 magnets for 1.5 and 3.0T full body MRI systems. Superconductor Science and Technology 30 (4): 043002.
100 100Lugabsky, L.B. (1987). Optimal coils for producing uniform magnetic fields. Journal of Physics E 20 (3): 277–285.
101 101Xu, H., Conolly, S., Scott, G.et al. (2000). Homogeneous magnet design using linear programming. IEEE Transactions on Magnetics 36 (2): 476–483.
102 102Xu, H., Conolly, S.M., Scott, G.C.et al. (1999). Fundamental scaling relations for homogeneous magnets. Proceedings of the ISMRM 475.
103 103Zhang, B., Gazdzinski, C., Chronik, B.et al. (2005). Simple design guidelines for short MRI systems. Magnetic Resonance Part B (Magnetic Resonance Engineering) 25B (1): 53–59.
104 104Lucas, J., Lucas, P., and LeMercier, T. (2014). Rare Earths: Science, Technology, Production and Use, 1e, 224–225. Elsevier
105 105Sagawa, M., Fujimura, H., Yamamoto, Y.et al. (1984). Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Transactions on Magnetics 20 (5): 1584–1589.
106 106Kazemivalipour, E., Bhusal, B., Vu, J.et al. (2021). Vertical open-bore MRI scanners generate significantly less radiofrequency heating around implanted leads: A study of deep brain stimulation implants in 1.2T OASIS scanners versus 1.5T horizontal systems. Magnetic Resonance in Medicine 86 (3): 1560–1572.
107 107Halbach, K. (1979). Strong rare earth cobalt quadrupoles. IEEE Transactions on Nuclear Science 26 (3): 3882–3884.
108 108Halbach, K. (1980). Design of permanent multipole magnets with oriented rare earth cobalt material. Journal of Nuclear Instruments & Methods 69: 1–10.
109 109Shute, H.A., Mallison, J.C., Wilton, D.T.et al. (2000). One-sided fluxes in planar, cylindrical, and spherical magnetized structures. IEEE Transactions on Magnetics 36 (2): 440–451.
110 110Raich, H.and Blumler, P. (2004). Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMR mandhalas. Concepts in Magnetic Resonance 23B (1): 16–25.
111 111Cooley, C.Z., Haskell, M.W., Cauley, S.F.et al. (2018). Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm. IEEE Transactions on Magnetics 54 (1): 1–12.
112 112Purchase, A.R., Vidarsson, L., Wachowicz, K.et al. (2021). A short and light, sparse dipolar Halbach magnet for MRI. IEEE Access 9: 95294–95303.
113 113Choi, J.S.and Yoo, J. (2008). Design of a Halbach magnet array based on optimization techniques. IEEE Transactions on Magnetics 44 (10): 2361–2366.
114 114Tewari, S., O’Reilly, T., and Webb, A. (2021). Improving the field homogeneity of fixed- and variable-diameter discrete Halbach magnet arrays for MRI via optimization of the angular magnetization distribution. Journal of Magnetic Resonance 324: 106923.
115 115O’Reilly, T., Teeuwisse, W.M., De Gans, D.et al. (2021). In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array. Magnetic Resonance in Medicine 85 (1): 495–505.
116 116Cooley, C.Z., Stockmann, J.P., and Wald, L.L. (2021). A portable brain MRI scanner based on a 72 mT, 35 kg “Halbach-bulb” magnet and external gradient coil. Proceedings of the ISMRM, virtual.
117 117Manz, B., Benecke, M., and Volke, F. (2008). A simple, small and low cost permanent magnet design to produce homogeneous magnetic fields. Journal of Magnetic Resonance 192 (1): 131–138.
118 118McGinley, J.V., Ristic, M., and Young, I.R. (2016). A permanent MRI magnet for magic angle imaging having its field parallel to the poles. Journal of Magnetic Resonance 271: 60–67.
119 119Hugon, C., D’Amico, F., Aubert, G.et al. (2010). Design of arbitrarily homogeneous permanent magnet systems for NMR and MRI: Theory and experimental developments of a simple portable magnet. Journal of Magnetic Resonance 205 (1): 75–85.
120 120Aubert, G. (1991). Cylindrical permanent magnet with longitudinal induced field. USA patent 5014032.
121 121Ren, Z.H., Mu, W.C., and Huang, S.Y. (2019). Design and optimization of a ring-pair permanent magnet array for head imaging in a low-field portable MRI system. IEEE Transactions on Magnetics 55 (1): 1–8.
122 122 Ren, Z.H., Gong, S., and Huang, S.Y. (2019). An irregular-shaped inward-outward ring-pair magnet array with a monotonic field gradient for 2D head imaging in low-field portable MRI. IEEE Access 7: 48715–4872.
123 123Kuang, I., Arango, N., Stockmann, J.P.et al. (2019). Equivalent-charge-based optimization of spokes and hub magnets for hand-held and classroom MR imaging. Proceedings of the ISMRM, Montreal, Canada.
124 124Mullen, M.and Garwood, M. (2020). Contemporary approaches to high-field magnetic resonance imaging with large field inhomogeneity. Progress in Nuclear Magnetic Resonance Spectroscopy 120–121: 95–108.
125 125Lange, K.and Carson, R. (1984). EM reconstruction algorithms for emission and transmission tomography. Journal of Computer Assisted Tomography 8 (2): 306–316.
126 126 Harshbarger, T.B.and Twieg, D.B. (1999). Iterative reconstruction of single-shot spiral MRI with off resonance. IEEE Transactions on Medical Imaging 18 (3): 196–205.
127 127 Fessler, J. (2010). Model-based image reconstruction for MRI. IEE Signal Processing Magazine 27 (4): 81–89.
128 128Sutton, B.P., Noll, D.C., and Fessler, J.A. (2003). Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities. IEEE Transactions on Medical Imaging 22 (2): 178–188.
129 129Hurlimann, M.D.and Griffin, D.D. (2000). Spin dynamics of Carr-Purcell-Meiboom-Gill-like sequences in grossly inhomogeneous B(0) and B(1) fields and application to NMR well logging. Journal of Magnetic Resonance 143 (1): 120–135.
130 130McDaniel, P.C., Cooley, C.Z., Stockmann, J.P.et al. (2019). The MR Cap: A single-sided MRI system designed for potential point-of-care limited field-of-view brain imaging. Magnetic Resonance in Medicine 82 (5): 1946–1960.
131 131Ben-Eliezer, N., Shrot, Y., and Frydman, L. (2010). High-definition, single-scan 2D MRI in inhomogeneous fields using spatial encoding methods. Magnetic Resonance Imaging 28 (1): 77–86.
132 132Snyder, A.L., Corum, C.A., Moeller, S.et al. (2014). MRI by steering resonance through space. Magnetic Resonance in Medicine 72 (1): 49–58.
133 133Kobayashi, N., Parkinson, B., Idiyatullin, D.et al. (2021). Development and validation of 3D MP-SSFP to enable MRI in inhomogeneous magnetic fields. Magnetic Resonance in Medicine 85 (2): 831–844.
134 134Zhen, J.Z., O’Neill, K.T., Fridjonsson E.O.et al. (2018). A resistive Q-switch for low-field NMR systems. Journal of Magnetic Resonance 287: 33–40.
135 135Scott, G.C., Conolly, S., and Macovski, A. (1996). Low field preamp matching design for high-Q receiver coils. Proceeding of the ISMRM, New York.
136 136Darrasse, L.and Ginefri, J.C. (2003). Perspectives with cryogenic RF probes in biomedical MRI. Biochimie 85 (9): 915–937.
Читать дальше