Philip Hofmann - Solid State Physics

Здесь есть возможность читать онлайн «Philip Hofmann - Solid State Physics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Solid State Physics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Solid State Physics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Enables readers to easily understand the basics of solid state physics
Solid State Physics
Solid State Physics
Solid State Physics

Solid State Physics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Solid State Physics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(1.20) To ensure that is still a real function we require that 121 - фото 170

To ensure that картинка 171is still a real function, we require that

(1.21) картинка 172

that is, that the coefficient картинка 173must be the complex conjugate of the coefficient картинка 174. This description is more elegant than the one with the sine and cosine functions. How is it related to the reciprocal lattice? In one dimension, the reciprocal lattice of a chain of points with lattice constant картинка 175is also a chain of points, now with spacing Solid State Physics - изображение 176[see Eq. (1.17)]. This means that we can write a general reciprocal lattice “vector” as

(1.22) Solid State Physics - изображение 177

where картинка 178is an integer. Exactly these reciprocal lattice “vectors” appear in Eq. (1.20). In fact, Eq. (1.20)is a sum of functions with a periodicity corresponding to the lattice vector, weighted by the coefficients картинка 179. Figure 1.11illustrates these ideas by showing the lattice and reciprocal lattice for such a chain as well as two lattice‐periodic functions, both in real space and as Fourier coefficients on the reciprocal lattice points. The advantage of describing these functions by the coefficients картинка 180is immediately obvious: Instead of giving картинка 181for every point in a range of картинка 182, the Fourier description consists of just three numbers for the upper function and five numbers for the lower function. Actually, these even reduce to two and three numbers, respectively, because of Eq. (1.21).

Figure 111 Top A chain with a lattice constant as well as its reciprocal - фото 183

Figure 1.11 Top: A chain with a lattice constant картинка 184as well as its reciprocal lattice, a chain with a spacing of картинка 185. Middle and bottom: Two lattice‐periodic functions картинка 186in real space as well as their Fourier coefficients. The magnitude of the Fourier coefficients картинка 187is plotted on the reciprocal lattice vectors they belong to.

The same ideas also work in three dimensions. In fact, one can use a Fourier sum for lattice‐periodic properties that corresponds to Eq. (1.20). For the lattice‐periodic electron concentration Solid State Physics - изображение 188, we get

(1.23) Solid State Physics - изображение 189

where картинка 190are the reciprocal lattice vectors.

Thus we have seen that the reciprocal lattice is very useful for describing lattice‐periodic functions. But this is not the whole story: The reciprocal lattice can also simplify the treatment of waves in crystals in a very general sense. Such waves can be X‐rays, elastic lattice distortions, or even electronic wave functions. We will come back to this point at a later stage.

1.3.1.6 X‐Ray Diffraction from Periodic Structures

Turning back to the specific problem of X‐ray diffraction, we can now exploit the fact that the electron concentration is lattice‐periodic by inserting Eq. (1.23)in our expression from Eq. (1.11)for the diffracted intensity. This yields

(1.24) Let us inspect the integrand The exponential represents a plane wave with a - фото 191

Let us inspect the integrand. The exponential represents a plane wave with a wave vector картинка 192. If the crystal is very big, the integration will average over the crests and troughs of this wave and the result of the integration will be very small (or zero for an infinitely large crystal). The only exception to this is the case where

(1.25) Solid State Physics - изображение 193

that is, when the difference between incoming and scattered wave vector equals a reciprocal lattice vector. In this case, the exponential in the integral is 1, and the value of the integral is equal to the volume of the crystal. Equation 1.25is often called the Laue condition. It is central to the description of X‐ray diffraction from crystals in that it describes the condition for the observation of constructive interference.

Looking back at Eq. (1.24), the observation of constructive interference for a chosen scattering geometry (or scattering vector картинка 194) clearly corresponds to a particular reciprocal lattice vector картинка 195. The intensity measured at the detector is proportional to the square of the Fourier coefficient of the electron concentration картинка 196. We could therefore think of measuring the intensity of the diffraction spots appearing for all possible reciprocal lattice vectors, obtaining the Fourier coefficients of the electron concentration and reconstructing this concentration from the coefficients. This would give us all the information needed and thus conclude the process of structure determination. Unfortunately, this straightforward approach does not work because the Fourier coefficients are complex numbers. Taking the square root of the intensity at the diffraction spot therefore gives the magnitude, but not the phase of картинка 197. The phase is lost in the measurement; this is known as the phase problemin X‐ray diffraction. To solve an unknown structure, one has to find a way to work around it. One simple approach for this is to calculate the electron concentration for a structural model, obtain the magnitude of the картинка 198values and thus also the expected diffracted intensity, and compare this to the experimental result. Based on the outcome, the model can be refined until the agreement is satisfactory.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Solid State Physics»

Представляем Вашему вниманию похожие книги на «Solid State Physics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Solid State Physics»

Обсуждение, отзывы о книге «Solid State Physics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x