Со временем я научился не удивляться образованным в естественном языке фразам, которые порождают парадоксы, подобные логическому порочному кругу, образованному двумя предложениями на карточке из моей рождественской хлопушки. Сама возможность формировать осмысленные предложения не означает, что каждому такому предложению всегда можно приписать истинное значение, имеющее смысл.
Мне кажется, что такая скользкая природа языка была одной из причин, по которым меня привлекла точность математики, в которой такие двусмысленности недопустимы. Но, как я объясню в этой главе, один из величайших специалистов по математической логике всех времен, Курт Гёдель, доказал именно при помощи парадокса из моей хлопушки, что даже моя собственная наука содержит истинные утверждения о числах, истинность которых мы никогда не сможем доказать.
Естествознание против математики
Такое стремление к уверенности, к знанию – подлинному знанию – было одной из главных причин, по которым я предпочел математику всем остальным наукам. В естественных науках то, что, как нам кажется, мы знаем о Вселенной, – это модели, соответствующие экспериментальным данным. Модели, которые могут стать научными теориями, должны допускать возможность опровержения. Теории выживают – если они выживают – тогда, когда все имеющиеся данные соответствуют их модели. Если мы получаем новые данные, противоречащие модели, мы должны сменить модель. Научная теория по самой своей природе предполагает возможность оказаться отвергнутой. Но можем ли мы в таком случае на самом деле быть уверены в своей правоте, хоть когда-нибудь?
Когда-то мы считали, что Вселенная статична, но потом произошли новые открытия, доказавшие, что галактики разбегаются от нас. Мы полагали, что скорость расширения Вселенной уменьшается вследствие воздействия гравитации. Затем мы выяснили, что ее расширение ускоряется. Мы ввели в свою модель идею темной энергии, стремящейся раздвинуть Вселенную во все стороны. Эта модель еще ждет доказательства своей неправоты, хотя пока что вновь появляющиеся экспериментальные данные все более подтверждают ее. В конце концов мы можем найти истинную модель Вселенной, которую не смогут поколебать никакие новые открытия. Но мы никогда не сможем быть уверены в том, что справедлива именно эта модель.
В этом и состоит одна из наиболее интересных черт естественных наук – они постоянно развиваются, в них всегда появляется что-то новое. Мы можем сочувственно относиться к старым теориям, утратившим свое значение. Разумеется, новые теории вырастают из старых. Ученый постоянно опасается, что его теория, модная в данный момент и получающая многочисленные премии, внезапно может оказаться вытеснена чем-то новым. Модель атомного пудинга, идея абсолютного времени, одновременная определимость положения и импульса частиц – все они давно покинули вершину списка научных бестселлеров. Их заменили новые теории.
Та модель Вселенной, о которой я читал в школе, с тех пор была полностью переписана. Однако с математическими теоремами, которые я учил в то же время, ничего такого не произошло. Они столь же справедливы сегодня, как и в тот день, когда я их впервые прочел, как и в тот день, когда они были открыты. А с этого дня в некоторых случаях прошло целых 2000 лет. Меня, неуверенного в себе прыщавого подростка, особенно привлекала такая определенность. Это не означает, что математика статична. Она постоянно развивается по мере того, как неизвестное становится известным, но такое известное остается известным и устойчивым, образуя первые страницы очередной великой истории. Почему же процесс достижения математической истины столь отличен от того, с чем имеет дело естествоиспытатель, не имеющий надежды получить окончательное знание?
Самый важный ингредиент на кухне математика – это доказательство.
Доказательство: путь к истине
Существуют свидетельства того, что люди занимались математикой уже во 2-м тысячелетии до н. э. На вавилонских глиняных табличках и египетских папирусах находятся сложные вычисления и решения задач: оценки значения π, формула расчета объема пирамиды, алгоритмы решения квадратных уравнений. Но, как правило, эти документы описывают процедуры, пригодные для решения конкретных задач. Мы не находим обоснований того, почему такие процедуры всегда работают, за исключением убедительных свидетельств того, что они успешно работали в тысячах предыдущих случаев, зарегистрированных на более ранних глиняных табличках. Математическое знание было основано на опыте и обладало скорее естественнонаучным оттенком. Новые процедуры разрабатывались, если возникала задача, которую нельзя было решить при помощи уже известных алгоритмов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу