Петр Путенихин - Правила счета элементов бесконечного множества

Здесь есть возможность читать онлайн «Петр Путенихин - Правила счета элементов бесконечного множества» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, Издательство: Array SelfPub.ru, Жанр: sci_theories, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Правила счета элементов бесконечного множества: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Правила счета элементов бесконечного множества»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Вскрыты ошибки Кантора и его последователей в логических рассуждениях о бесконечных множествах. Приведено доказательство счетности континуума, счетности всех действительных чисел. Показана ошибочность рассуждений в задаче об "Отеле Гильберта". The mistakes of Cantor and his followers in logical reasoning about infinite sets are revealed. The proof of the countability of the continuum, the countability of all real numbers is given. The erroneousness of reasoning in the problem of "Hilbert's Hotel" is shown.

Правила счета элементов бесконечного множества — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Правила счета элементов бесконечного множества», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис2 Нумерация точек отрезка На рисунке показан фрагмент последовательной - фото 18

Рис.2. Нумерация точек отрезка

На рисунке показан фрагмент последовательной нумерации точек, начиная с точки 0,5 и заканчивая на точке 0,31. Мы последовательно рассматриваем фрагмент, точки с натуральными порядковыми номерами 5, 6, 7, 8, 9, 10, 11, 12, 13, по которым из выражения (3) определяем значения этих точек: 0,5 (точка номер 5); 0,6 (точка номер 6); 0,7 (точка номер 7 и так далее); 0,8; 0,9; 0,01 (точка номер 10); 0,11; 0,21; 0,31 (точка номер 13). Как видим, порядковые номера точек равномерно возрастают, но сами точки при этом "скачут" по линии. Отметим главное: фактическое значение точки "возникает" в самом процессе нумерации. То есть, сначала мы выбираем некоторый или очередной, натуральный порядковый номер точки, а затем определяем её местоположение на линии и присваиваем этой точке выбранный номер.

Собственно говоря, нумерация элементов массива и означает присвоение конкретному элементу некоторого определенного номера, как бы навешивание на элемент таблички с номером. Поэтому выбрав элемент, мы можем увидеть его номер, а выбрав номер, узнать, какому элементу он принадлежит. В рассмотренном случае с нумерацией точек линии натуральный порядковый номер, например, 12 389 принадлежит точке на линии со значением 0,98321. Наоборот, точка линии со значением, например, 0,5612999 имеет в массиве порядковый номер 9 992 165.

Такой же алгоритм можно использовать и для нумерации точек плоских или объемных, многомерных объектов, например, точек куба. В случае многомерных объектов номер преобразуется к виду (3) по методу Кантора, созданного им для отождествления точек линии и квадрата [3, с.77].

Предположим, некая точка куба имеет следующие координаты, в которых буквы α, β и γ обозначают любую цифру в этих числах:

Используя метод Кантора формируем из этих чисел новое число Отсутствующие - фото 19

Используя метод Кантора, формируем из этих чисел новое число:

Отсутствующие цифры для какоголибо индекса заменяем нулями Дробную часть - фото 20

Отсутствующие цифры для какого-либо индекса заменяем нулями. Дробную часть полученного комбинированного числа инвертируем, поворачиваем "задом наперед", согласно (3), и получаем натуральный порядковый номер рассмотренной точки куба. Например, точка куба с координатами p(x, y, z) = (0,123; 0,321; 0,9171) при комбинировании даст число N=139 221 317 001, что означает порядковый номер точки в бесконечном их массиве, равный 100 713 122 931. Понятно, что обратным преобразованием можно так же найти координаты любой точки по её номеру. Например, точка с порядковым номером 1 234 567 890 имеет в кубе координаты p(0,0741; 0,963; 0,852). Рассмотренный вариант относится к кубу с единичным ребром, но он может быть легко расширен на куб с любым размером ребра, а также на объекты вообще с любым числом измерений.

Наконец, метод позволяет перенумеровать и составные элементы: комплексные числа, кватернионы и тому подобные. Например, комплексное число можно представить в виде

В этой записи буквами α и γ обозначены целая часть числа реальной и мнимой - фото 21

В этой записи буквами α и γ обозначены целая часть числа реальной и мнимой части, а буквами β и δ, соответственно, их дробные части. Например:

Количество цифр α β γ и δ в записях может быть любым Теперь используя метод - фото 22

Количество цифр α, β, γ и δ в записях может быть любым. Теперь, используя метод комбинации, можно получить число N, инверсная запись которого и будет обозначать натуральный порядковый номер этого числа в их бесконечном массиве. Например, приведенное выше комплексное число будет иметь в бесконечном массиве всех возможных комплексных чисел натуральный порядковый номер 200 123 021 325. Кстати, можно заметить, что в таком массиве первые 10 чисел (0…9) являются реальными, а число i (комплексная единица) находится на позиции 100 и имеет порядковый номер 10. Также заметим, что при таком подходе основой всех чисел являются вещественные числа, а различные комплексные и им подобные – это простая комбинация этих базовых чисел. Условно говоря – все эти комбинационные числа являются своеобразной тенью, миражом чисел реальных.

Нетрудно заметить, что нумерация комплексных чисел тождественна нумерации точек квадрата. В этих частных случаях можно легко применить для их нумерации традиционный диагональный процесс Кантора.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Правила счета элементов бесконечного множества»

Представляем Вашему вниманию похожие книги на «Правила счета элементов бесконечного множества» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Правила счета элементов бесконечного множества»

Обсуждение, отзывы о книге «Правила счета элементов бесконечного множества» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x