Петр Путенихин - Правила счета элементов бесконечного множества

Здесь есть возможность читать онлайн «Петр Путенихин - Правила счета элементов бесконечного множества» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, Издательство: Array SelfPub.ru, Жанр: sci_theories, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Правила счета элементов бесконечного множества: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Правила счета элементов бесконечного множества»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Вскрыты ошибки Кантора и его последователей в логических рассуждениях о бесконечных множествах. Приведено доказательство счетности континуума, счетности всех действительных чисел. Показана ошибочность рассуждений в задаче об "Отеле Гильберта". The mistakes of Cantor and his followers in logical reasoning about infinite sets are revealed. The proof of the countability of the continuum, the countability of all real numbers is given. The erroneousness of reasoning in the problem of "Hilbert's Hotel" is shown.

Правила счета элементов бесконечного множества — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Правила счета элементов бесконечного множества», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но это решение ошибочно. По условиям задачи определённо сказано, что свободных номеров нет! Следовательно, данный «парадокс» Гильберта является псевдо парадоксом [9], поскольку вместо подселения производится выселение. В предложенном решении производится подмена понятий. Состояние, стационарное, неизменное – заполненность всех номеров жильцами – подменяется процессом, динамическим, движением – переселением постояльцев из одного номера в другой.

Во-первых, этот процесс будет длиться вечно, во-вторых, в случае даже одного нового гостя, на всём протяжении процесса переселений один из постояльцев всегда будет без гостиничного номера, то есть, будет сидеть в коридоре, что является нарушением условий решения задачи. Иначе говоря, все постояльцы просто поделились своим временем проживания с новым жильцом как в пословице "с миру – по нитке".

Собственно математическая ошибка состоит в том, что за большим числом постояльцев как-то незаметно прячется суть задачи. Математической процедурой, манипуляцией с бесконечностями подменяется само содержание исходного тезиса: подселение в заполненный отель дополнительных постояльцев. Показать эту подмену можно, если взять противоположный предельный вариант: в отеле всего один номер, и он занят. Для того чтобы поселить нового, прежнего постояльца временно выселяют буквально в коридор под предлогом переселения. Здесь, как видим, и обнаруживается скрытая подмена понятий переселения и выселения. Вновь пришедшего гостя селят в освободившийся номер. Но прежнего постояльца тоже надо куда-то поместить. Поэтому вновь заселенного гостя опять выселяют, а на его место селят прежнего постояльца. И так по кругу. В конечном счете, каждый из них в номере проживает только половину времени, а вторую – на стуле в коридоре.

В таком варианте задача принципиально ничем не отличается от задачи с бесконечным числом комнат. Добавим ещё одну комнату и будем по кругу переселять теперь уже троих постояльцев. Можно добавить и четверную комнату и производить всё ту же процедуру "переселения-выселения". Дойдя до бесконечности, мы и получим парадокс отеля в исходном варианте. Однако в его минимальной конфигурации мы явно обнаруживаем: постояльцы, по сути, часть времени проводят на стуле возле комнаты. При бесконечном числе комнат и конечном числе новых постояльцев это время стремится к нулю. Отличие только в этом. Если же число постояльцев растет, как предлагается в расширенных версиях парадокса, то и время "на стуле около комнаты" также будет расти вплоть до той же исходной величины – половины времени проживания. Рассмотренные решения «парадоксов» нарушают главный принцип отелей: постоялец должен вселиться и жить в нем, пока сам не решит его покинуть.

Вместе с тем, обнаруженное нарушение можно отнести к слабому опровержению решения задачи. Более важным выводом из неё является заявленное доказательство несчетности всех действительных чисел. Но ошибочно и это доказательство.

Несостоявшаяся перепись

Парадокс отеля оказался настолько интересным и показательным, что он получил дальнейшее развитие, которое описано, например, в виде шутливого научно-фантастического рассказа от имени вымышленного персонажа:

"Из треста космических гостиниц пришел приказ составить заранее все возможные варианты заполнения номеров. Эти варианты потребовали представить в виде таблицы, каждая строка которой изображала бы один из вариантов. При этом заполненные номера должны были изображаться единицами, а пустые нулями. Например, вариант 101010101010… означал, что все нечетные номера заняты, а все четные пустые, вариант 11111111111… означал заполнение всей гостиницы, а вариант 000000000000… означал полный финансовый крах – все номера пустовали" [9, с.70-71].

Этот фрагмент, цитата является продолжением рассказа об "Отеле Гильберта", для случая бесконечного числа отелей с бесконечным числом номеров и бесконечным множеством гостей. В продолжении рассмотрен еще один из вероятных парадоксов, возникающих в таком тресте отелей. Итак, форма отчета определена. Далее определяется способ его составления:

"Директор был перегружен работой и поэтому придумал простой выход из положения. Каждой дежурной по этажу было поручено составить столько вариантов заполнения, сколько номеров было в ее ведении. При этом были приняты меры, чтобы варианты не повторялись. Через несколько дней списки были представлены директору, и он объединил их в один список" [там же]

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Правила счета элементов бесконечного множества»

Представляем Вашему вниманию похожие книги на «Правила счета элементов бесконечного множества» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Правила счета элементов бесконечного множества»

Обсуждение, отзывы о книге «Правила счета элементов бесконечного множества» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x