Н. — Правда, некогда мы с тобой уже разбирали, как диод выпрямляет высокочастотный сигнал, после чего односторонние полупериоды, усредненные емкостью, создают на сопротивлении нагрузки низкочастотное напряжение.
Детектирование — выпрямление
Л. — Так вот схема (рис. 120), в которой для тебя нет ничего неизвестного.
Рис. 120. Схема диодного детектора с трансформаторной связью с последним колебательным контуром промежуточной частоты.
Точечный диод Д выпрямляет ток, поступающий с последнего трансформатора промежуточной частоты, и создает на выводах резистора R напряжение, высокочастотная пульсация которого сглаживается конденсатором С 1 , причем выявляется составляющая низкой частоты. Перемещая подвижной контакт потенциометра R , можно снимать для дальнейшего усиления большую или меньшую часть этого напряжения, регулируя таким образом громкость. Электролитический конденсатор С 2 передает низкочастотный сигнал на базу транзистора первого каскада усиления низкой частоты, одновременно изолируя цепь базы от схемы детектора по постоянному току.
Н. — Для чего поставлен здесь резистор R 2 ?
Л. — Для предотвращения чрезмерного снижения сопротивления нагрузки диода из-за шунтирующего входного сопротивления транзистора. При этом уменьшается затухание, вносимое схемой детектора в последний колебательный контур промежуточной частоты, и повышается эффективность работы детектора при малых сигналах. Этому также способствует небольшое смещение диода в прямом направлении, создаваемое при помощи резистора R 4 , который присоединяется к отрицательному полюсу батареи и выводит рабочую точку диода на участок характеристики с наибольшей кривизной. Соответствующее этой точке «пороговое» напряжение точечных диодов составляет примерно 0,25 В (рис. 121).
Рис. 121. Зависимость тока диода от приложенного к нему напряжения. Следует обратить внимание на худшую чувствительность точечного диода к малым напряжениям (заметный ток появляется только при напряжении порядка 0,25 В).
Н. — Я вижу, что ты от этого же детектора получаешь напряжение для АРУ.
Л. — Да, но я не уверен, что напряжения, получаемого на нагрузке детектора, всегда достаточно для успешной работы АРУ. Однако, прежде чем говорить об усиленной АРУ, я хочу предложить тебе разобраться самому в действии одной более «изысканной» схемы диодного детектора. Вот посмотри (рис. 122).
Рис. 122. Схема детектора, создающего напряжение АРУ на отдельном резисторе R 5. Пульсации выпрямленного диодом тока сглаживаются конденсатором С 5.
Н. — Я этого не боюсь. От предыдущей схемы она отличается цепочкой C 3R 7C 4 — настоящим небольшим фильтром, пропускающим низкие частоты, предназначенным для устранения всяких следов промежуточной частоты в напряжении, поступающем на усилитель низкой частоты. Кроме того, ты создаешь регулирующее напряжение для системы АРУ на особом резисторе R 5 , заблокированном конденсатором С 5 . Чтобы этот конденсатор не шунтировал цепи низкочастотного сигнала, ты соединил точку А с диодом через резистор R 6 . Кроме того, при помощи резистора R 6 , присоединенного к отрицательному полюсу источника питания, ты подаешь на базы регулируемых транзисторов начальное смещение. Одним словом, здесь цепи низкой частоты лучше отделены от цепей АРУ. Но я хотел бы знать, как ты осуществляешь усиленную АРУ.
Л. — Очень просто, путем детектирования с помощью транзистора (рис. 123), точнее говоря, с помощью эмиттерного р-n перехода, который также представляет собой диод. Его пороговое напряжение значительно меньше, чем у точечных диодов, так что небольшого отрицательного смещения, порядка 0,1 В, создаваемого делителем напряжения достаточно, чтобы сделать возможным детектирование сигналов с малой амплитудой. Запомни получше, что это смещение не должно превышать 0,1 В; без этого условия транзистор вместо детектирования начнет усиливать колебания промежуточной частоты, что нам совершенно не нужно… Открываясь же только при отрицательных полупериодах входного напряжения, транзистор будет создавать в цели коллектора лишь токи, соответствующие этим полупериодам.
Читать дальше