Наряду с другими соображениями, прежде всего конфликт с Кронеккером привел его к убеждению, что для обеспечения свободы и научной независимости отдельного, в особенности начинающего исследователя в математическом сообществе и для защиты от чрезмерного влияния отдельных ученых целесообразно объединить немецких математиков в одну организацию. По его инициативе было основано Немецкое математическое объединение , которому с самого начала он был предан всей душой, никогда не уставая подчеркивать значение его для свободы научного творчества. Мы находим имя Кантора среди подписавших «гейдельбергское воззвание» 1889 года, первое публичное обращение к коллегам по случаю 62-го Съезда немецких естествоиспытателей и врачей, а также принятые в следующем году «бременские постановления» Математико-аcтрономического отдела Съезда естествоиспытателей, которыми и было учреждено Объединение. Начиная с основания Объединения (18 сентября 1890 г. Кантор был его председателем, а также соиздателем двух первых томов “Jahresbericht”, и когда осень 1893 г. он вынужден был по состоянию здоровья отказаться от председательства, в выраженной ему благодарности подчеркивалось, что именно ему принадлежит «первый почин основания Объединения, а его живое и энергичное участие привело к осуществлению этого плана» [21] Jaresbericht d. D. Mathematikerveereinigung, 1, 3–7 (1892) и 3б 8 (1894)
.
Отложив личную неприязнь, он пригласил Кронеккера сделать вступительный доклад на первом собрании Объединения в Галле (осенью 1891 года) [22] Ни это приглашение, ни тон упоминаемого ниже ответного письма Кронеккера не должны ввести нас в заблуждение по поводу характера отношений между учеными, оставшегося прежним; ср. письмо Кантора Миттаг-Лефлеру от 5 сентября 1891 г.
. Кронеккер, не будучи в состоянии принять это приглашение вследствие смерти жены, в своем ответе высказал аргументы в пользу и против этой организации; письмо его, в существенной части, было опубликовано в первом томе “Jahresbericht”. По случаю первого собрания Объединения Кантор прочел также знаменитый доклад [17], в котором упростил доказательство одного из своих теоретико-множественных результатов, что позволило теми же средствами (с помощью диагонального процесса) установить существование бесконечного числа различных трансфинитных мощностей. Это рассуждение значительно проще доказательства того же предложения с помощью числовых классов в части 5 работы [13] и избегает, сверх того, обходного пути через порядковые числа.
Более широкий план Кантора − основать международную организацию математиков потерпел неудачу; но он решительно и успешно работал над учреждением Международных математических конгрессов .
Кантор завершил свои математические публикации вышедшей в 1895−97 годах статьей [17] из двух частей. Она представляет систематическое изложение большей части его результатов по общей теории множеств и написана совсем в ином − можно сказать, классически зрелом − духе, чем его прежние работы. Мы находим здесь предназначенную для математической публики, освобожденную от критических и философских прибавлений версии работы «К учению о трансфинитном»; при этом весьма подробно излагается еще не-достававшая там теория вполне упорядоченных множеств и порядковых чисел, но первоначально задуманное применение ее к теории кардинальных чисел опущено, по-видимому, из-за отсутствия теоремы о полном упорядочении. Из «классических» теорем абстрактной теории множеств мы не обнаруживаем в [17] лишь теоремы эквивалентности, первые доказательства которой появились в то же время.
При сравнении работы [17] , одной из двух величайших и бессмертных работ Кантора, со второй из них, [13], прежде всего видно смещение центра тяжести от множеств к числам ; далее значительный прогресс в смысле ясности и систематичности делает эту статью еще и сейчас ценной для преподавания.
В таком развитии чувствуется влияние Дедекинда, невольное и, возможно, не осознанное обоими. Но и в этой поздней работе заметно сохраняется дистанция, отделяющая ее от построений Дедекинда и Фреге, как в отношении самого понятия множества, так и в способе последовательного восхождения, отправляющегося от конечных множеств, и в (неоправданном по существу) ограничении вторым числовым классом.
В особенности следует отметить начало статьи [17]. Здесь приводится известное определение множества, заметно отличающееся от предыдущих (ср. также часть 1 работы «К учению о трансфинитном»), а затем вводится понятие мощности в смысле только что указанной работы − как общего понятия, возникающего из множества при двойной абстракции, от природы элементов и от порядка их задания; таким образом, понятие мощности уже не определяется через эквивалентность, как в [13]. За надлежащим образом видоизмененными определениями упорядочения по величине и мощностей следует отчетливое замечание, что «сравнимость» не самоочевидна и не может быть доказана в этом месте построения; автор обещает доказать теорему о сравнимости в дальнейшем и указывает, что «теорема эквивалентности» будет вытекать из нее как следствие.
Читать дальше