Уже в 1896 г. он избирается членом правления Секции математики и астрономии Леопольдо-Каролинской Немецкой академии естествоиспытателей в Галле, членом которой он был с 1889 г.
Ср. отчет Лорея в Ztschr. f. Math. u. Naturw. 46, 269−274 (1915)
Докторанты по математике (немногочисленные в то время) большею частью приезжали в Галле на короткое время с уже готовыми диссертациями, главным образом из Берлина
Ср. также в “Über die verschiedenen Standpunkte in Besug auf das aktuelle Unendliede”: «Вероятно, я первый по времени защищая эту точку зрения [Принятие актуально-бесконечного in concreto (в конкретном) и in abstracto (в абстракции)] с полной определенностью и со всеми ее следствиями; но я наверное знаю, что не буду последним ее защитником!»
Ср. также подстрочное примечание Миттаг-Лефлера в начале работы Кантора [I5], а также оценку заслуги Бендиксона в части 6 работы [13]
Особенно характерна в этом смысле рецензия Кантора на книгу Германа Когена “Prinzip der Infinitesimalmethode und seine Geschichte” («Принцип метода бесконечно малых и его история») в Deutche Literaturzeitung, 5, ст. 266–268 (1884)
«Лекции о развитии математики в XIX веке», ч. 1, Берлин, 1926. Приведем оттуда следующее место: «Если освободить схоластические рассуждения от этой мистико-метафизически окрашенной оболочки, в которой они представляются поверхностному взгляду чисто теологическими тонкостями, то они часто оказываются вполне правильными подходами к тому, что мы теперь называем теорией множеств». Что касается Больцано, то схоластика очевидным образом была отправным пунктом его исследований о бесконечности
Возникает вопрос, сознательно или несознательно примыкает здесь Кантор к Г. Ганкелю, уже в 1867 г. в своей “Theorie der komplexen Zalensysteme” («Теории комплексных числовых систем»), указавшему в качестве предмета математики «интеллектуальные объекты», которым действительные объекты или их отношения могут но не обязаны соответствовать»
Ср. следующее место в работе “Über die verschiedenen Standpunkte in Besug auf das aktuelle Unendliede”: «Если бы первое (множество) не противостояло нам как объект, то чтó могло бы последнее (соответствующее кардинальное число) отражать в качестве абстрактного образа в нашем разуме?»
Ср. мою книгу и Einleitung in die Mengenlehre («Введение в теорию множеств») (3-е изд., Берлин, 1928), стр. 325-322
Впрочем, слово «метафизика» часто применяется у Кантора (как и у Гaycca) не в принятом ныне смысле, а вслед за французским словоупотреблением приблизительно в смысле «философской критики» (некоторой науки); ср. заключение работы
Ср. также восходящие к «Сообщениям» Кантора ссылки в Ztschr. F. Philos. u. philos. Kritik, N. F., 88, стр. 192 и далее (1886); там же, стр. 229. С этими физическими взглядами следует сравнить, наряду с Коши, на которого Кантор ссылается в “Über die verschiedenen Standpunkte in Besug auf das aktuelle Unendliede” и в “Mitteilungen zur Lehre vom Transfiniten”, также объяснение природы в книге Р. Грассмана “Die Lebenslehre oder Biologie” [«Учение о жизни или биология»]. (Штеттин, 1882/83)
Приложения теории точечных множеств к математической физике, намеченные в этом месте и, видимо, очень близкие сердцу Кантона, на нынешней стадии развития физики представляются бесперспективными; однако, физические приложения иного рода действительно имеются. В [13], ч. 5, Кантор особенно подчеркивает свою враждебность обычной атомистике
В новейшей литературе по поводу этих отношений между теологией и актуальной бесконечностью см., напр., сочинение А. Демпфа “Das Unendliche in der mittelalterlichen Metaphisik und in der Kantischen Dialektik” «Бесконечное в средневековой метафизике и в диалектике Канта (Мюнстер, 1926) и статью И. Тернуса (Общ-во Иисуса) «К философии математики», (Philos. Jahrb. Der Görresgeselschaft, 39, 217-231, 1926)
Как сообщает Тернус (loc.cit., 221), в библиотеке нижненемецкой провинции иезуитов сохранилось еще много сочинений за 80-е года с надписью Hommages respectueux de l’auteur George Cantor” («С почтением от автора Георга Кантора»)
Ср. “Philosophisches Jahrbuch der Görres – Gesellschaft”, 32, 366 (1919) и 41, 262 (1928)
«О проблеме бесконечного», Ztschr. F. Philos. u. philos. Kritik, N. F., 88, 179-223 (1886), ч.1. Ср. также Кантор, ibid., стр. 232 и подстрочное примечание к работе «Учение о трансфинитном» , согласно которому Гутберле включил в свою статью места из рукописи Кантора (по его желанию); см. далее, возражения Кантора в той же работе