Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс

Здесь есть возможность читать онлайн «Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика4, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия: Планиметрия в тезисах и решениях. 9 класс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия: Планиметрия в тезисах и решениях. 9 класс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.
Материалы пособия соответствуют учебной программе школьного курса геометрии.
Для учителей и учащихся 9-х классов.

Геометрия: Планиметрия в тезисах и решениях. 9 класс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия: Планиметрия в тезисах и решениях. 9 класс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Дискриминант D этого уравнения будет равен Но ab tgВСА значит ВСА - фото 480

Дискриминант D этого уравнения будет равен

Но ab tgВСА значит ВСА 60 или 30 Ответ 60 30 Задача 34 - фото 481 Но ab tgВСА значит ВСА 60 или 30 Ответ 60 30 Задача 34 - фото 482

Но a/b = tg(?ВСА), значит, ?ВСА = 60° или 30°.

Ответ: 60°; 30°.

Задача 34 (рис. 234)

Рис 234 Решение Пусть ABC заданный треугольник AD высота опущенная на - фото 483

Рис. 234.

Решение. Пусть ABC – заданный треугольник, AD – высота, опущенная на гипотенузу. Тогда по условию BD = 9, DC = 16. Обозначим АВ через х, АС через у, высоту AD через h. По теореме Пифагора: BD2+ AD2= АВ2; DC2+ AD2= АС2; АВ2+ AC2= ВС2. Получаем систему уравнений:

Сложим все уравнения 81 256 2h2 х2 у2 х2 у2 625 2h2 228 h 12 - фото 484

Сложим все уравнения:

81 + 256 + 2h2+ х2+ у2= х2+ у2+ 625;

2h2= 228; h = 12; х2= 81 + 144 = 225; x = 15;

у2= 256 + 144 = 400; y = 20.

Далее воспользуемся формулой r = S/p.

r 15030 5 Ответ 5 Задача 35 рис 235 Рис 235 Решение Пусть ABC - фото 485

r = 150/30 = 5.

Ответ: 5.

Задача 35 (рис. 235)

Рис 235 Решение Пусть ABC данный в условии задачи треугольник По теореме - фото 486

Рис. 235.

Решение. Пусть ABC – данный в условии задачи треугольник. По теореме Пифагора находим, что AC = ?3. Поскольку sin ?ABC = ?3/2, то, учитывая, что угол ?ABC – угол прямоугольного треугольника, находим, что ?ABC = ?/3. Следовательно, ?АСВ = ?/6. Так как BL – биссектриса угла ABC, то ?ABL = ?/6. Из прямоугольного треугольника ABL находим

Пусть М середина отрезка АС Тогда AM 12 АС 32 Из прямоугольного - фото 487

Пусть М – середина отрезка АС. Тогда AM = 1/2 АС = ?3/2. Из прямоугольного треугольника ВАМ находим, что

Так как точка пересечения медиан делит каждую из них в отношении 21 то Для - фото 488

Так как точка пересечения медиан делит каждую из них в отношении 2:1, то

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 489

Для ответа на вопрос, поставленный в задаче, надо сравнить числа

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 490

Поскольку

т е BL BG Ответ длина BL больше длины BG Задача 36 рис 236 Рис - фото 491

т. е. BL > BG.

Ответ: длина BL больше длины BG.

Задача 36 (рис. 236)

Рис 236 Решение Пусть ABC данный в условии задачи прямоугольный - фото 492

Рис. 236.

Решение. Пусть ABC – данный в условии задачи прямоугольный треугольник, А1ВС1 – прямоугольный треугольник, полученный поворотом треугольника ABC вокруг вершины его прямого угла В на угол 45°. Из условия задачи следует, что величины углов CBC1, CBA1, ABA1, ВСА, ВА1C1 равны 45°. Прямые АВ и А1C1 параллельны, т. к. при их пересечении прямой ВА1 равны накрест лежащие углы АВА1 и ВА1С1. Но тогда, поскольку треугольник ABC прямоугольный и, значит, АВ ? ВС, получаем, что прямая С1А1 перпендикулярна прямой ВС. Обозначим через N точку пересечения прямых С1А1 и СВ. Поскольку

то точка N лежит на отрезке ВС Пусть L точка пересечения прямых АС и ВА1 - фото 493

то точка N лежит на отрезке ВС. Пусть L – точка пересечения прямых АС и ВА1. Аналогично показывается, что точка L лежит на отрезке АС. Пусть М – точка пересечения прямых АС и С1А1. Ясно, что точка М лежит на отрезке CL. Тогда SBLMN = SBLC – SCNM. Треугольник BLC равнобедренный и прямоугольный, т. к. в нем ?CBL = ?LCB = 45°. Следовательно,

Треугольник CNM также равнобедренный и прямоугольный причем Следовательно - фото 494

Треугольник CNM также равнобедренный и прямоугольный, причем

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 495

Следовательно,

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 496

Итак,

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 497

Ответ:

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 498

Задача 43 (рис. 237)

Рис 237 Решение Проведём высоты трапеции ВК и СМ Очевидно что КМ 4 AK - фото 499

Рис. 237.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Представляем Вашему вниманию похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Обсуждение, отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x