Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс

Здесь есть возможность читать онлайн «Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика4, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия: Планиметрия в тезисах и решениях. 9 класс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия: Планиметрия в тезисах и решениях. 9 класс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.
Материалы пособия соответствуют учебной программе школьного курса геометрии.
Для учителей и учащихся 9-х классов.

Геометрия: Планиметрия в тезисах и решениях. 9 класс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия: Планиметрия в тезисах и решениях. 9 класс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Билет № 16

1. Формула расстояния от точки А(х0, у0) до прямой ах + by + с = 0.

2. Значения sin, cos, tg, ctg от углов 30°, 45° и 60°.

3. Докажите, что если треугольники подобны, то с тем же коэффициентом пропорциональны произвольные соответствующие линейные элементы этих треугольников.

4. В треугольнике ABC длина стороны АС равна 3, ?ВАС = ?/6 и радиус описанной окружности равен 2. Доказать, что площадь треугольника ABC меньше 3.

5. Площадь прямоугольника ABCD равна 48, а длина диагонали равна 10. На плоскости, в которой расположен прямоугольник, выбрана точка О так, что OB = OD = 13. Найти расстояние от точки О до наиболее удалённой от нее вершины прямоугольника.

Билет № 17

1. Координаты на плоскости. Расстояние между точками.

2. Теорема косинусов. Связь теоремы косинусов и теоремы Пифагора.

3. Площадь четырёхугольника, правильного n-угольника.

4. В треугольнике ABC медианы, проведенные к сторонам АС и ВС, пересекаются под прямым углом. Длина стороны АС равна b, длина стороны ВС равна а. Найти длину стороны АВ.

5. Найдите геометрическое место точек, равноудалённых от данной прямой и данной точки.

Билет № 18

1. Уравнение фигуры. Уравнение окружности.

2. Базис на плоскости. Теорема о разложении вектора по базису.

3. Формула S = рr для треугольника.

4. Из всех прямоугольников, вписанных в полукруг, найти прямоугольник наибольшей площади.

5. На сторонах АВ и АС треугольника ABC взяты точки М и Т, такие, что AM/MB = CN/NA = 1/2. Отрезки BN и СМ пересекаются в точке К. Найти отношения отрезков BK/KN и CK/KM.

Билет № 19

1. Касательная к окружности, её свойство. Виды касания окружностей.

2. Координатные формулы движений.

3. Формула S = abc/4R для треугольника.

4. В треугольнике ABC угол А прямой, величина угла В равна 30°. В треугольник вписана окружность, радиус которой равен ?3. Найти расстояние от вершины С до точки касания этой окружности с катетом АВ.

5. Основания трапеции равны 4 см и 9 см, а диагонали равны 5 см и 12 см. Найти площадь трапеции и угол между её диагоналями.

Билет № 20

1. Пропорциональность отрезков хорд и секущих окружности.

2. Первая теорема косинусов для четырёхугольника.

3. Свойство средней линии треугольника и трапеции.

4. Стороны треугольника образуют арифметическую прогрессию. Доказать, что радиус окружности, вписанной в треугольник, равен 1/3 высоты, проведённой к средней по величине стороне треугольника.

5. Средняя линия трапеции равна 4, отрезок, соединяющий середины оснований, равен 1, углы при основании трапеции равны 40° и 50°. Найдите длины оснований трапеции.

Глава 4

Решения и ответы к задачам

§ 1. Решения и ответы к задачам § 1 главы 2

Задача 10 (рис. 220)

Рис 220 Решение Пусть ВС х тогда AD х 4 Площадь треугольника ABC - фото 437

Рис. 220.

Решение. Пусть ВС = х, тогда AD = х – 4. Площадь треугольника ABC равна 1/2 ? ВС ? AD = 1/2 ? х ? (х – 4). По условию площадь равна 16. Значит, 1/2 ? х ? (х – 4) = 16, откуда х = 8. BС = 8, AD = BС – 4 = 4. По теореме Пифагора

Периметр треугольника равен PABC AC BC AB 5 8 41 13 41 - фото 438

Периметр треугольника равен PABC = AC + BC + AB = 5 + 8 + ?41 = 13 + ?41.

Ответ: 13 + ?41 см.

Задача 11

Решение. Запишем площадь треугольника тремя способами:

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 439

c другой стороны,

Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 440 Геометрия Планиметрия в тезисах и решениях 9 класс - изображение 441

Аналогично

Задача 12 рис 221 Рис 221 Решение Пусть в треугольнике ABC АС 2 - фото 442

Задача 12 (рис. 221)

Рис 221 Решение Пусть в треугольнике ABC АС 2 Проведем отрезок DE так - фото 443

Рис. 221.

Решение. Пусть в треугольнике ABC АС = ?2. Проведем отрезок DE так, что площадь треугольника DBE равна площади трапеции ADEC. Так как нам нужно найти длину отрезка DE, обозначим ее через х. Введем еще обозначения: высоту треугольника DBE обозначим через h1 высоту трапеции ADEC через h2 Составим систему уравнений:

Первое уравнение фиксирует равенство площадей треугольника DBE и трапеции ADEC - фото 444

Первое уравнение фиксирует равенство площадей треугольника DBE и трапеции ADEC. Второе уравнение констатирует тот факт, что площадь треугольника ABC в 2 раза больше площади треугольника DBE, при этом использовано условие АС = ?2. Решая систему, получаем:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Представляем Вашему вниманию похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Обсуждение, отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x