Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс

Здесь есть возможность читать онлайн «Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика4, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия: Планиметрия в тезисах и решениях. 9 класс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия: Планиметрия в тезисах и решениях. 9 класс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.
Материалы пособия соответствуют учебной программе школьного курса геометрии.
Для учителей и учащихся 9-х классов.

Геометрия: Планиметрия в тезисах и решениях. 9 класс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия: Планиметрия в тезисах и решениях. 9 класс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но тут же ученику предложили доказать, что сумма углов в треугольнике равна 180°. Учащийся сослался на свойства параллельных прямых. Но сами свойства параллельных прямых он стал доказывать на основе признаков параллельности прямых. Круг замкнулся. Поэтому в повторении теории будьте последовательны и внимательны. При чтении доказательства теоремы особое внимание обращайте на то, где в доказательстве использованы условия теоремы, какие ранее доказанные теоремы при этом использовались.

В настоящем параграфе формулировки теорем приведены по учебнику А. В. Погорелова «Геометрия. 7–9 классы».

Основные теоремы планиметрии и следствия из них
1. Теоремы о прямых (параллельность и перпендикулярность на плоскости)

Свойства параллельных прямых.

Две прямые, параллельные третьей, параллельны (рис. 57).

(а||с, b||с) ? а||b.

Рис 57 Если две параллельные прямые пересечены третьей прямой то внутренние - фото 57

Рис. 57.

Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны, а сумма внутренних односторонних углов равна 180° (рис. 58).

а||b ? ? = ?

? + ? = 180°.

Рис 58 Признаки параллельности прямых Если при пересечении двух прямых - фото 58

Рис. 58.

Признаки параллельности прямых.

Если при пересечении двух прямых третьей образующиеся внутренние накрест лежащие углы равны, то прямые параллельны (рис. 59):

внутренние накрест лежащие углы равны ? а||b.

Рис 59 Если при пересечении двух прямых третьей сумма образовавшихся - фото 59

Рис. 59.

Если при пересечении двух прямых третьей сумма образовавшихся внутренних односторонних углов равна 180°, то прямые параллельны (рис. 60):

а||b.

Рис 60 Если при пересечении двух прямых третьей образующиеся соответственные - фото 60

Рис. 60.

Если при пересечении двух прямых третьей образующиеся соответственные углы равны, то прямые параллельны (рис. 61):

а||b.

Рис 61 Теоремы о существовании и единственности перпендикуляра к прямой - фото 61

Рис. 61.

Теоремы о существовании и единственности перпендикуляра к прямой. Через каждую точку прямой можно провести перпендикулярную ей прямую, и только одну (рис. 62).

Рис 62 Прямая b единственная прямая проходящая через точку А - фото 62

Рис. 62.

Прямая b – единственная прямая, проходящая через точку А перпендикулярно а.

Из любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр, и только один (рис. 63).

Рис 63 Прямая b единственная прямая проходящая через точку А - фото 63

Рис. 63.

Прямая b – единственная прямая, проходящая через точку А перпендикулярно а.

Связь между параллельностью и перпендикулярностью.

Две прямые, перпендикулярные третьей, параллельны (рис. 64).

(а ? с, b ? с) ? а||b.

Рис 64 Если прямая перпендикулярна одной из параллельных прямых то она - фото 64

Рис. 64.

Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой (рис. 65):

(а ? b, b||с) ? а ? с.

Рис 65 2 Теоремы об углах Углы в треугольнике Вписанные в окружность углы - фото 65

Рис. 65.

2 Теоремы об углах. Углы в треугольнике. Вписанные в окружность углы

Свойство вертикальных углов.

Вертикальные углы равны (рис. 66):

? = ?.

Рис 66 Свойство углов равнобедренного треугольника В равнобедренном - фото 66

Рис. 66.

Свойство углов равнобедренного треугольника. В равнобедренном треугольнике углы при основании равны. Верна и обратная теорема: если в треугольнике два угла равны, то он равнобедренный (рис. 67):

АВ = ВС ? ?А = ?С.

Рис 67 Теорема о сумме углов в треугольнике Сумма внутренних углов - фото 67

Рис. 67.

Теорема о сумме углов в треугольнике.

Сумма внутренних углов треугольника равна 180° (рис. 68):

? + ? + ? = 180°.

Рис 68 Теорема о сумме углов в выпуклом nугольнике Сумма углов выпуклого - фото 68

Рис. 68.

Теорема о сумме углов в выпуклом n-угольнике.

Сумма углов выпуклого n-угольника равна 180°?(n – 2) (рис. 69).

Рис 69 Пример1 2 3 4 5 18052 540 Теорема о внешнем - фото 69

Рис. 69.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Представляем Вашему вниманию похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Обсуждение, отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x