В математике к понятию палиндрома нужен иной подход, нежели в языкознании, потому что, в отличие от слова, любое число, написанное произвольным набором цифр, имеет право на существование, например, 1234567890987654321 – вполне реальное число. А что в нем еще интересного, в чем его исключительность? Содержательная сторона, изюминка идеи отражения здесь отсутствует, посмотришь на это число, и скажешь: «Ну, и что?». Можно поставить вопрос так: найти квадраты целых чисел, которые неизменно читаются как слева направо, так и наоборот. Некоторые из них найти легко: 11 2=121, 111 2=12321, 1111 2=1234321. Все получившиеся числа палиндромы, и данное правило применимо к любому числу единиц, не превосходящему девяти. Есть и другие случаи, но их найти труднее, например, 264 2=69696, 836 2=698896, 2285 2=5221225. Одним вопросом намечено целое направление для поиска числовых палиндромов с определенным смыслом. Есть палиндромы и среди кубов, например 11 3=1331, причем в большинстве случаев, если куб – палиндром, то и кубический корень из него – тоже палиндром. Поиск палиндромов среди пятых степеней, пока не дал результатов. Высказана гипотеза, согласно которой не существует чисел палиндромов вида x k при k >4 . Ее тоже кому-то нужно доказать или опровергнуть. Другой вопрос – сколько существует простых чисел палиндромов. Среди первых пятидесяти простых чисел я нашел шесть палиндромов: 11, 101, 131, 151, 181, 191. Сколько их всего – неизвестно! Высказывалось предположение о том, что простых чисел палиндромов бесконечно много, но эта гипотеза пока не доказана. Таким образом, в математике числовые палиндромы кроме своей специфической записи должны обладать каким-то еще интересным свойством, чтобы заслуживать внимание.
В свою очередь среди чисел палиндромов выделяются так называемые моноцифровые числа. Это если определять их более-менее по-русски (хотя какое моно русское слово?). По-английски они называются репдигит или репдиджит в зависимости от того, как мы прочитаем английскую запись (от англ. repdigit – repeated digit – повторение цифры). Вы уже поняли, что это числа, в записи которых повторяется одна цифра: 11111, 222222, 33333. Среди них в свою очередь выделяются числа репьюниты – натуральные числа, запись которых состоит из единиц (от repeated unit - повторённая единица). Термин репьюнит был придуман в 1966 году Альбертом Х. Бейлером в его книге «Recreations in the theory of numbers: the queen of mathematics entertains». Для них принято сокращенное обозначение в виде R n : R 1=1, R 2=11, R 3=111 и т. д. Получаем последовательность: 1, 11; 111; 1111; 11111; 1111111 … . Обидно, но приходится употреблять эти неудобоваримые названия, которые неблагозвучны на русском языке и мне не очень нравятся, в отличие от самих чисел, вынужденных носить эти « репы ». Для палиндромов придумали русское название – перевертень. Звучит хорошо, но почему-то не прижилось, а везде употребляется слово палиндром. Ничего не имею против взаимопроникновения языков. Мне только не нравится, что в основном это они в нас проникают. В моноцифровых числах много интересного, занимательного, поэтому о них еще поговорим в других разделах книги.
Еще один вид чисел, зависящих от входящих в них цифр – это стробограммные числа . Стробограммное число – это число, которое будучи записано на листе бумаги выглядит одинаково при повороте листа на 180 градусов. Например, 69, 96, 1001. Следует сделать небольшое замечание относительно записи единицы. Ее хвостик слева вверху немного портит картину, но принято на него не обращать внимание. При записи с использованием стандартных символов числа 0, 1, 8 симметричны вокруг горизонтальной оси, а 6 и 9 одинаковы друг с другом при повороте на 180 градусов. В такой системе записи первыми стробограммными числами являются: 1, 8, 11, 69, 88, 96, 101, 111, 181, 609, 619, 689, 808, 818, 888, 906, 916, 986, 1001, 1111, 1691, 1881, … .
Подобные числа входят в круг интересов любителей занимательной математики, а профессиональные математики, как правило, не занимаются ими. Стробограммные свойства данного числа зависят от шрифта. Например, в семисегментном изображении на электронных часах цифры 2 и 5 имеют центральную симметрию. Самый последний перевернутый год был 1961, А до этого последовательно 1881 и 1691.
Тетрадные или четырехполюсные числа – это числа, которые остается неизменными при отражении относительно горизонтальной или вертикальной оси симметрии, а также при центральной симметрии. Единственными цифрами, которые остаются теми же, если перевернуты вверх-вниз или зеркально отражены, являются 0, 1 и 8, поэтому тетрадное число-это палиндромическое число, содержащее только 0, 1 и 8 в качестве цифр. Первые несколько тетрадных чисел: 1, 8, 11, 88, 101, 111, 181, 808, 818, … . Четырехсторонняя симметрия объясняет название, поскольку tetra – это греческое число четыре . Тетрадные числа являются одновременно стробограммными и палинромическими. Более крупное тетрадное число всегда может быть сгенерировано путем добавления другого тетрадного числа к каждому концу исходного числа, сохраняя симметрию.
Читать дальше