Владимир Трошин - Натуральные числа. Этюды, вариации, упражнения

Здесь есть возможность читать онлайн «Владимир Трошин - Натуральные числа. Этюды, вариации, упражнения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2020, ISBN: 2020, Жанр: Математика, Развлечения, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Натуральные числа. Этюды, вариации, упражнения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Натуральные числа. Этюды, вариации, упражнения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Тысячи лет человечество использует в практической деятельности и одновременно изучает натуральные числа. В них привлекает внешняя простота, которая при внимательном рассмотрении превращается в необозримую бесконечность. Этим объясняется тот факт, что многие проблемы, связанные с натуральными числами, поставлены очень давно, но не решены до сих пор. Люди постоянно продолжают находить в натуральных числах что-то новое и интересное. Об этом интересном рассказывает книга. Читайте, расширяйте свой кругозор, тренируйте ум, развивайтесь.

Натуральные числа. Этюды, вариации, упражнения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Натуральные числа. Этюды, вариации, упражнения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предисловие

Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Первыми существенными успехами, заложившими фундамент арифметики, стали определение понятия числа, отделение его от конкретных объектов счета и изобретение четырех основных действий с числами: сложения, вычитания, умножения и деления. Развитие математики началось благодаря вавилонянам и египтянам. Источником наших знаний о вавилонской цивилизации служат хорошо сохранившиеся глиняные таблички, покрытые так называемыми клинописными текстами, которые датируются от 2000 года до н.э. и до 300 года н.э. Математика на клинописных табличках в основном была связана с ведением хозяйства. Наше знание древнеегипетской математики основано главным образом на двух папирусах, датируемых примерно 1700 годом до нашей эры. Излагаемые в этих папирусах математические сведения восходят к еще более раннему периоду – около 3500 до нашей эры. Египтяне использовали математику, чтобы вычислять вес тел, площади посевов, объемы зернохранилищ, размеры податей и количество камней, требуемое для возведения тех или иных сооружений. Затем эстафетную палочку подхватили древние греки. С точки зрения современности родоначальниками математики как науки явились греки классического периода (6–4 вв. до н.э.). Математика, существовавшая в более ранний период, была набором эмпирических заключений. Первой книгой, в которой арифметика излагалась независимо от геометрии, было «Введение в арифметику» греческого математика и философа Никомаха Герасского (первая половина II века нашей эры). В истории арифметики ее роль сравнима с ролью «Начал» Евклида в истории геометрии. На протяжении более 1000 лет она служила стандартным учебником, поскольку в ней ясно, четко и всеобъемлюще излагалось учение о целых числах (простых, составных, взаимно простых).

Наша современная система счисления, основанная на позиционном принципе записи чисел и использовании нуля для обозначения пустого разряда, называется индо-арабской. На стене храма, построенного в Индии около 250 года до н.э., обнаружено несколько цифр, напоминающих по своим очертаниям наши современные цифры. Около 800 года н.э. индийская математика достигла Багдада. Термин «алгебра» происходит от начала названия книги Аль-джебр ва-л-мукабала (Восполнение и противопоставление), написанной в 830 году астрономом и математиком аль-Хорезми.

Около 1100 года в западноевропейской математике начался почти трехвековой период освоения сохраненного арабами и византийскими греками наследия Древнего мира и Востока. Поскольку арабы владели почти всеми трудами древних греков, Европа получила обширную математическую литературу. Перевод этих трудов на латынь способствовал подъему математических исследований. Все великие ученые того времени признавали, что черпали вдохновение в трудах греков. Заканчивая этот краткий экскурс в историю, можно сказать, что нашим знаниям о натуральных числах уже 5 тысяч лет! В дальнейшем математика развивалась как вширь – появлялись новые разделы и области математики, так и вглубь, например, постоянно расширялось понятие числа.

Несколько слов хочется сказать о вкладе нашей страны в развитие математики. На первый, поверхностный взгляд может показаться, что все в науке сделано древними египтянами, греками, потом учеными Западной Европы. Действительно, Россия стала цивилизованной страной, когда элементарная математика уже была создана, поэтому в школьных учебниках мы встречаем теорему Пифагора, формулу Герона, доказательство Гаусса, но нет элементарных вещей созданных Ивановым, Петровым и Сидоровым. Для того чтобы добраться до дифференциальных уравнений математической физики, теорем о распределении простых чисел, сложных законов теории вероятностей, неевклидовой геометрии и услышать фамилии Чебышева, Остроградского, Ковалевской, Лобачевского и десятков других наших соотечественников нужно подняться на вершины высшей математики. Естественно, это удается не каждому, поэтому фамилии наших математиков известны специалистам, а не широкому кругу читателей. Наша страна была первой в космосе. За этой таинственной работой тысяч людей тоже скрыты сложные дифференциальные уравнения и математические расчеты, о которых мы не узнаем, да и не сможем понять. Отечественная космонавтика сложнее и гораздо полезнее в практическом плане, чем древнеегипетские пирамиды.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Натуральные числа. Этюды, вариации, упражнения»

Представляем Вашему вниманию похожие книги на «Натуральные числа. Этюды, вариации, упражнения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Натуральные числа. Этюды, вариации, упражнения»

Обсуждение, отзывы о книге «Натуральные числа. Этюды, вариации, упражнения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x