К тексту
4. г) 13.
Очевидно, что как минимум два переключателя должны быть в положении «включен». Два переключателя в положении «включен» и три переключателя в положении «выключен» можно установить только одним способом: выключен, включен, выключен, включен, выключен. Три переключателя в положении «включен» и два переключателя в положении «выключен» можно расположить шестью разными способами. Четыре переключателя в положении «включен» и один переключатель в положении «выключен» могут быть установлены пятью разными способами. И наконец, пять переключателей в положении «включен» могут располагаться одним способом. Итого 1 + 6 + 5 + 1 = 13 способов.
К тексту
5. д) 42.
Рассмотрим столбец тысяч. Буквами обозначены разные цифры. Поскольку S = 3, M может быть 0, 1 или 2. Мы можем исключить 0 и 1, так как S должно отличаться от М только на 1 перенос из предыдущего разряда. Следовательно, M = 2 при условии переноса 1 из столбца сотен. A = 9, потому что только при этом значении можно перенести 1 в следующий разряд, если из разряда десятков также был сделан перенос 1. Таким образом, U должно обозначать 0. В столбце десятков N должно обозначать 8 с переносом 1; это не может быть 9, поскольку эта цифра уже использовалась. Остается O + Y = 13. Пары чисел, которые подходят для O и Y, – это 4 и 9 (или наоборот), 5 и 8 (или наоборот), а также 6 и 7 (или наоборот). Однако 8 и 9 уже использовались, так что это должен быть последний вариант: 6 × 7 = 7 × 6 = 42.
К тексту
6. г) 3.
Это происходит только в случаях, когда показания на часах меняются с 09:59:59 на 10:00:00; с 19:59:59 на 20:00:00 и с 23:59:59 на 00:00:00.
К тексту
7. г) 216.
Первые шесть положительных кубов – это 1, 8, 27, 64, 125 и 216. Очевидно, что 64 не может быть суммой трех положительных кубов, поскольку сумма всех положительных кубов меньших 64 равна 1 + 8 + 27 = 36. Аналогичным образом 125 не может быть суммой трех положительных кубов, поскольку максимальная сумма любых трех положительных кубов меньших 125 равна 8 + 27 + 64 = 99. Однако 27 + 64 + 125 = 216, а значит, 216 – это и есть наименьший куб, представляющий собой сумму трех положительных кубов.
К тексту
8. в) 13-й.
Если первые три члена последовательности – это −3, 0, 2, то четвертый член – это −3 + 0 + 2 = −1. Следовательно, пятый член – 0 + 2–1 = 1 и т. д. Первые тринадцать членов этой последовательности: –3, 0, 2, –1, 1, 2, 2, 5, 9, 16, 30, 55, 101…
К тексту
9. в) 320.
Для того чтобы пронумеровать страницы с 1-й по 9-ю, нам понадобится 9 цифр; для нумерации страниц с 10-й по 99-ю необходимо 180 цифр. Таким образом, для нумерации страниц до начала трехзначных чисел (со страницы 100) потребуется 189 цифр. Остается 663 цифры, на которые приходится еще 221 страница. Следовательно, в книге 9 + 90 + 221 = 320 страниц.
К тексту
10. б) 18.
Представьте, что этот крест состоит из трех горизонтальных уровней. На первом расположен куб, который был приклеен к верхней грани исходного куба. На втором находится исходный куб и четыре дополнительных куба, приклеенных к его боковым граням. Третий уровень содержит только куб, приклеенный к нижней грани исходного куба. При добавлении желтых кубов один куб приклеивается к верхней грани голубого куба на первом уровне и четыре куба – к его боковым граням. Восемь желтых кубов будут приклеены к голубым кубам на втором уровне. А к единственному голубому кубу на третьем уровне будут приклеены пять желтых кубов, как и в кубе на первом уровне. Следовательно, всего потребуется 18 желтых кубов.
К тексту
Глава 5. Игры с числами. Задачи для сторонников чистоты жанра
101. ЗЕРКАЛО, ЗЕРКАЛО
Эти суммы одинаковые! Такой вывод кажется довольно неожиданным, пока вы не проанализируете вычисления по столбцам. Может, даже целесообразно произнести это вслух. Первый столбец суммы слева содержит одну девятку, или 1 × 9; первый столбец суммы справа содержит девять единиц, или 9 × 1. Второй столбец суммы слева содержит две восьмерки, или 2 × 8; второй столбец суммы справа содержит восемь двоек, или 8 × 2. И так далее. Цифры в каждом столбце дают в сумме одно и то же число, а значит, общие суммы одинаковы.
К тексту
102. ИНТЕЛЛЕКТ КАК У ГАУССА
Если бы нам требовалось записать все эти числа в столбик, как при сложении, то надо было бы знать, что при использовании подхода Гаусса каждый столбец, соответствующий разряду единиц, десятков, сотен и тысяч, содержит одни и те же цифры – единицы, двойки, тройки и четверки, хотя порядок цифр в каждом столбце будет разным. Подсчитать сумму цифр в каждом столбце не составит труда: (6 × 1) + (6 × 2) + (6 × 3) + (6 × 4) = 6 + 12 + 18 + 24 = 60. Следовательно, общая сумма равна:
Читать дальше
Конец ознакомительного отрывка
Купить книгу