Стало быть, необходимо зажечь один фитиль с обоих концов, а другой – только с одного конца. Через 30 минут один фитиль сгорит полностью, а другому останется гореть еще 30 минут. В этот момент нужно поджечь другой конец второго фитиля. Зажженный с обоих концов, фитиль сгорит за 15 минут, то есть через 45 минут начиная с момента зажигания.
2. Если поджечь один фитиль с одного конца, он сгорит за 1 час. Если поджечь один фитиль с двух концов, он сгорит за полчаса. Если бы можно было зажечь один фитиль с трех концов, то он сгорел бы за треть часа, или за 20 минут, поскольку горение фитиля в трех местах означало бы, что он сгорит в три раза быстрее, чем в случае, если будет гореть с одной стороны.
Однако у фитиля не три, а два конца. Наверное, вам это известно. Тем не менее это препятствие можно обойти. Для этого нужно разрезать фитиль на две части и зажечь одну часть с двух сторон, а другую только с одной стороны. Теперь фитиль горит в трех местах, чего мы и добивались.
Нам требуется, чтобы фитиль всегда горел в трех местах, поэтому, как только одна часть фитиля полностью сгорит, разрежьте оставшийся фрагмент на две части и подожгите их так, чтобы у одной части горели два конца, а у другой только один. Продолжайте делать так до тех пор, пока оставшийся фрагмент фитиля не станет слишком маленьким, чтобы резать его на части. Фитиль будет непрерывно гореть в трех местах до тех пор, пока не сгорит почти полностью, а значит, он сгорит примерно за 20 минут.
К тексту
60. НЕПРАВИЛЬНАЯ МОНЕТА
Эту задачу впервые сформулировал (и решил) Джон фон Нейман, гениальный математик венгерского происхождения, внесший значительный вклад в каждую область науки, в которой работал, а также открывший некоторые новые научные области.
Орел или решка неправильной монеты не выпадают с вероятностью 50: 50. Тем не менее, если подбросить такую монету дважды, вероятность того, что выпадет орел, а затем решка, равна вероятности того, что сначала выпадет решка, а затем орел. (Формально говоря, если вероятность выпадения орла равна a , а вероятность выпадения решки – b , то вероятность выпадения орла, а затем решки равна a × b ; вероятность выпадения решки, а затем орла – b × a , что эквивалентно a × b. ) Таким образом, чтобы имитировать поведение правильной монеты с помощью неправильной, нужно обозначить вероятности либо «орел, затем решка» (ОР), либо «решка, затем орел» (РО) и подбросить монету дважды. И вы получите следующие варианты: ОР, РО, ОО или РР. В двух последних случаях, когда монета выпадет дважды одной стороной, проигнорируйте результат и снова подбросьте ее два раза. Остановитесь, если выпадет ОР или РО, но продолжайте подбрасывать в случае выпадения ОО или РР. Вероятность выпадения ОР или РО равна 50: 50, что имитирует результат подбрасывания правильной монеты.
К тексту
61. РАЗДЕЛИТЕ МУКУ
Взвешивание 1: высыпьте 1 килограмм муки в две чаши весов так, чтобы в каждой чаше было по 500 граммов.
Взвешивание 2: пересыпьте одну из горок муки весом 500 граммов в какую-то емкость, а оставшуюся часть разделите на две чаши, по 250 граммов в каждой.
Взвешивание 3: одну из горок муки весом 250 граммов тоже пересыпьте в емкость. Из другой продолжайте отбирать муку до тех пор, пока остаток не уравновесит две гири суммарным весом 50 граммов (10 и 40 граммов). У вас получится горка муки весом 200 граммов. Мука в емкости будет, соответственно, весить 800 граммов.
К тексту
62. ЗАДАЧА О ВЗВЕШИВАНИИ БАШЕ
Нам известно, что с помощью данного набора из шести гирь (1, 2, 4, 8, 16, 32) можно взвесить любое целое число килограммов от 1 до 63, если класть гири на одну чашу.
Требуется определить, как измерить вес от 1 до 40 килограммов с помощью меньшего количества гирь, при условии, что мы можем класть их на любую чашу. Начнем со взвешивания предметов весом от 1 килограмма и больше, используя минимальное количество гирь и добавляя новую гирю только тогда, когда не будет другого выхода; на каждом этапе это будет гиря с максимально возможным весом.
Обозначим две чаши весов символами А и Б. Для того чтобы уравновесить предмет весом 1 килограмм, расположенный на чаше А, необходимо поставить на чашу Б килограммовую гирю. Итак, наш набор килограммовых гирь состоит пока из одной гири.
Чтобы уравновесить предмет весом 2 килограмма на чаше А, нужно положить на чашу Б двухкилограммовую гирю. Однако есть и другой способ, который позволит нам использовать новую гирю с б о льшим весом. Поскольку у нас уже есть гиря весом 1 килограмм, мы могли бы положить предмет весом 2 килограмма и килограммовую гирю на чаше А, уравновесив ее гирей на 3 килограмма на чаше Б.
Читать дальше
Конец ознакомительного отрывка
Купить книгу