К добавлению
Более подробный анализ предшествовавших теории катастроф приложений ее идей имеется в статье:
Арнольд В. И. Теория катастроф. Современные проблемы математики. Фундаментальные направления. — М.: ВИНИТИ, 1986. — Т. 5. — С. 219 — 277. — (Итоги науки и техники.)
где приведена и соответствующая библиография.
См. также:
Bennequin D. Caustique mystique // Seminaire N. Bourbaki. — 1984. — № 634. — P. 1 — 37.
Саати Т. Л. Математические модели конфликтных ситуации. — М.: Сов. радио, 1977. — С. 47 — 53.
То есть для всех случаев, кроме некоторых исключительных.
"Я так думаю, голубушка, что декадентство это самое не что иное, как просто к купечеству подход". — В. М. Дорошевич. Рассказы и очерки (М., 1966. С. 295).
Под "типом" здесь понимается класс эквивалентности с точностью до диффеоморфизма плоскости, а не с точностью расслоенного диффеоморфизма (расслоенный диффеоморфизм — это семейство диффеоморфизмов фазового пространства, зависящих от параметра, сопровождаемых диффеоморфной заменой параметра).
Все перечисленные особенности классифицируются по типам A k, D k, о которых подробнее рассказано выше.
Первоначальное доказательство теоремы Уитни, о которой мы начали, занимало около 40 страниц; хотя окончательные геометрические результаты теории особенностей легко могут быть понятны и использованы, доказательства продолжают оставаться сложными.
Диффеоморфизм — это замена координат, гладкая вместе с обратной заменой.
Лагранжева эквивалентность двух лагранжевых особенностей — это отображение первого лагранжева расслоения на второе, переводящее первую симплектическую структуру во вторую и первое лагранжево подмногообразие во второе.
Достаточно взять уравнение (х — 1) ... (х — n) = 0; к приведенным рассуждениям остается добавить очень немного, чтобы получить вполне строгое доказательство "основной теоремы алгебры", по которой всякое уравнение степени n имеет n комплексных корней.
Между прочим, из топологических свойств тора (а именно из того, что пара меридианов делит тор на две части) следует, что периоды колебаний с одинаковой полной энергией в обеих ямах механической системы с потенциальной энергией четвертой степени одинаковы (на торической римановой поверхности множества уровня энергии — фазовые кривые обеих ям — разные меридианы).
Ситуация здесь в точности такая же, как с листом Мёбиуса. При непрерывном обходе вдоль осевой окружности листа Мёбиуса мы можем непрерывно отождествлять поперечные ей отрезки. Но когда мы впервые вернемся к исходному отрезку, полученное отождествление этого отрезка с самим собой будет менять местами его концы.