Владимир Арнольд - Теория катастроф

Здесь есть возможность читать онлайн «Владимир Арнольд - Теория катастроф» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 1990, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теория катастроф: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теория катастроф»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Математическое описание катастроф — скачкообразных изменений, возникающих в виде внезапного ответа системы на плавное изменение внешних условий, дается теориями особенностей и бифуркаций. Их применения к конкретным задачам в разных областях науки вызвали много споров. В книге рассказывается о том, что же такое теория катастроф и почему она вызывает такие споры. Изложены результаты математических теорий особенностей и бифуркаций. Новое издание дополнено обзором недавних достижений теории перестроек, библиографией и задачником. Рассчитана на научных работников, преподавателей, студентов и всех, кто интересуется современной математикой.

Теория катастроф — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теория катастроф», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

К разделу 13

Арнольд В. И. Критические точки функций на многообразии с краем, простые группы Ли В k, С k, F 4и особенности эволют // Успехи мат. наук. — 1978. — Т. 33, вып. 5. — С. 91 — 105.

Платонова О. А. Особенности в задаче о скорейшем обходе препятствия // Функцион. анализ и его прил. — 1981. — Т 15 вып. 2. — С. 86 — 87.

Платонова О. А. Особенности системы лучей вблизи препятствия. — Москва, 1981.150 с. — Деп. ВИНИТИ 11.02.81. — № 647 — 81.

Арнольд В. И. Особенности в вариационном исчислении // Современные проблемы математики. — М.: ВИНИТИ, 1983. — Т. 22. — С. 3 — 55. — (Итоги науки и техники).

К разделу 14

Теория лагранжевых особенностей основана в 1966 г. См.:

Арнольд В. И. О характеристическом классе, входящем в условия квантования // Функцион. анализ и его прил. — 1967. — Т. 1, вып. 1. — С. 1 — 14.

Hormander L. Fourier integral operators, I // Acta Math. — 1971. — V. 127. — P. 79 — 183.

Арнольд В. И. Интегралы быстро осциллирующих функций и особенности проекций лагранжевых многообразий // Функцион. анализ и его прил. — 1972. — Т. 6, вып. 3. — С. 61 — 62.

Арнольд В. И. Нормальные формы функций вблизи вырожденных критических точек, группы Вейля Аk, Dk, Еk и лагранжевы особенности // Функцион. анализ и его прил. — 1972. — Т. 6, вып. 4. — С. 3 — 25.

См. также:

Guckenheimer J. Catastrophes and partial differential equations // Ann. Inst. Fourier. — 1973. — V. 23, № 2. — P. 31 — 59.

Теория лежандровых особенностей впервые появилась в книге:

Арнольд В. И. Математические методы классической механики. — М.: Наука, 1974. — 432 c.

и в докладе:

Arnold V. I. Gritical points of smooth functions // Proo. of the International Congress of Mathematicians (Vancouver 1974). — Canadian Mathematical Congress. — 1975. — V. 1. — P. 19 — 39.

См. также:

Sewell M. J. On Legendre transformations and elementary catastrophes // Math. Proc. Cambr. Philos. Soc. 1977. — V. 82. — P. 147 — 163.

Dubois J. G., Dufоur J. P. La theorie des catastrophes, V. Transformee de Legendre et thermodynamique // Ann. Inst. Henri Poincare, Nouv. Ser. Sect. A. 1978. — V. 29. — P. 1 — 50.

О раскрытом ласточкином хвосте см.:

Арнольд В. И. Лагранжевы многообразия с особенностями, асимптотические лучи и раскрытый ласточкин хвост // Функцион. анализ и его прил. — 1981. — Т. 15, вып. 4. — С. 1 — 14.

Arnold V. I. Singularities of Legendre varieties, of evolvents and of fronts at an obstacle // Ergodic Theory Dyn. Syst. — V. 2. — P. 301 — 309.

Гивенталь А. Б. Лагранжевы многообразия с особенностями и неприводимые sl(2)-модули // Успехи мат. наук. — 1983. — Т. 38, вып. 6. — С. 109 — 110.

Гивенталь А. Б. Многообразия многочленов, имеющих корень фиксированной кократности, и обобщенное уравнение Ньютона // Функцион. анализ и его прил. — 1982. -Т. 16, вып. 1. — С. 13 — 18.

Теоремы Гивенталя о подмногообразиях симплектического и контактного пространства впервые появились в первом издании этой книжки, в 1981 г. Они обобщают теорему Дарбу — Вейнстейна (разница состоит в том, что в теоремах Гивенталя структуры ограничиваются лишь на касательные к подмногообразию векторы). Теорема Дарбу — Вейнстейна доказана в статье:

Weinstein A. Lagrangian submanifolds and hamiltonian Systems // Ann. Math., II Ser. — 1973. — V. 98. — P. 373 — 410.

О подмногообразиях симплектических и контактных пространств см. также:

Арнольд В. И., Гивенталь А. Б. Симплектическая геометрия // Современные проблемы математики, Фундаментальные направления. — М.: ВИНИТИ; 1985. — Т. 4. — С. 5 — 139. — (Итоги науки и техники.)

Арнольд В. И. Особенности в вариационном исчислении // Современные проблемы математики. — М.: ВИНИТИ, 1983. — Т. 22. — С. 3 — 5. — (Итоги науки и техники.)

Melrose R. B. Equivalence of glancing hypersurfaces // Invent. Math. — 1976. — V. 37. — P. 165 — 191.

Melrose R. B. Equivalence of glancing hypersurfaces, II // Math. Ann. 1981. — V. 255. — P. 159 — 198.

Martinet J. Sur les singularites des formes differentielles // Ann. Inst. Fourier. — 1970. — V. 20, № 1. — P. 95-178.

Roussarie R. Modeles locaux de champs et de formes // Asterisque.- 1975. — V. 30.

Golubitsky M., Tischler D. An example of moduli for singular simplectic forms // Invent. Math. — 1977. — V. 38. P. 219 — 225.

Гивенталь А. Б . Особые лагранжевы многообразия и их лагранжевы отображения // Современные проблемы математики. — М.: ВИНИТИ; 1988. — Т. 83. — С. 55 — 112. — (Итоги науки и техники.)

Арнольд В. И. О поверхностях, определяемых гиперболическими уравнениями // Мат. заметки. — 1988. — Т. 44, вып. 1.

Arnold V. I. On the interior scattering of waves, defined by hyperbolic variational principles // J. of Geometry and Physics. — 1988. — V. 5, № 4. — P. 458 — 475.

Гивенталь А. Б. Лагранжевы вложения поверхностей и раскрытый зонтик Уитни//Функцион. анализ и его прил. — 1986. — Т. 20, вып. 3. — С. 35 — 41.

Пословица о хохолке жаворонка цитируется Плутархом: "как у каждого жаворонка должен появиться хохолок, так в каждом цивилизованном государстве должны появиться доносчики — сикофанты".

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теория катастроф»

Представляем Вашему вниманию похожие книги на «Теория катастроф» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Теория катастроф»

Обсуждение, отзывы о книге «Теория катастроф» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x