Более подробное изложение можно найти в следующих книгах:
Милнор Дж. Особые точки комплексных гиперповерхностей. — М.: Мир, 1971. — 128 с.
Арнольд В. И., Варченко А. Н., Гусейн-Заде С. М. Особенности дифференцируемых отображений. II. Монодромия и асимптотики интегралов.- М.: Наука, 1984. — 336 с.
Арнольд В. И., Васильев В. А., Горюнов В. В., Ляшко О. В. Теория особенностей // Современные проблемы математики. Фундаментальные направления. — М.: ВИНИТИ, 1988. — Т. 6. — С. 1- 256. — (Итоги науки и техники.)
Brieskorn Е. Die Milnorgitter der exzeptionellen unirnodularen Singularitaten // Bonn. Math. Schr. — Bonn.: Math. Inst, der Universitat Bonn.- 1983. — Bd 150. — 225 S.
Brieskorn E., Knorrer H. Ebene algebraiche Kurven. — Boston: Birkhauser, 1981. — 964 p.
Работы об икосаэдре:
Ляшко О. В. Классификация критических точек функций на многообразиях с особой границей // Функцион. анализ и его прил. — 1983. — Т. 17, вып. 3. — С. 28-36.
Щербак О. П. Особенности семейств эвольвент в окрестности точки перегиба кривой и группа Н3, порожденная отражениями // Функцион. анализ и его прил. — 1983. — Т. 17, вып. 4. — С. 70 — 72.
Колчаны:
Gabriel P. Unzerlegbare Darstellungen, I // Manuscr., Math. — 1972. — V. 6. — P. 71 — 103.
Бернштейн И. H., Гeльфанд И. M., Пономарев В. А. Функторы Кокстера и теорема Габриэля // Успехи мат. наук. — 1973. — Т. 28, вып. 2. — С. 19 — 33.
Назарова Л. А., Ройтер А. В. Поликолчаны и схемы Дынкина // Функцион. анализ и его прил. — 1973 — С. 94 -95.
Dlab A.,Ringel К. М. Representation of graphs and algebras // Carleton Math. Lect. Notes. Ottawa: — Carleton University, 1974. — V. 8.
Правильные многогранники:
Клейн Ф. Лекции об икосаэдре. — М.: Наука, 1989.
МакКей Дж. Графы, особенности и конечные группы // Успехи мат. наук. — 1983. — Т. 38, вып. 3. — С. 159 — 164.
Краевые особенности:
Arnold V. I. Wave front evolution and equivariant Morse lemma // Commun. Pure Appl. Math. — 1976. — V. 29, № 6. — P. 557 — 582.
Wasserman D. Classification of singularities with compact abelian symmetry // Regensburger Math. Schr. Fachbereich Mathematik der Universitat Regensburg, 1977. — V. I.
Арнольд В. И. Критические точки функций на многообразии с краем, простые группы Ли В k, С k, F 4и особенности эволют // Успехи мат. наук. — 1978. — Т. 33, вып. 5. — С. 91 — 105.
Golubitsky M., Schaeffer D. A theory for imper feet bifurcation via singularity theory //Commun. Pure Appl. Math. 1979. — V. 32. — P. 21 — 98.
Pitt D. H., Poston T. Determinacy and unfolding in the presence of a boundary, 1978. (Мифический препринт, цитированный в 16-й главе КНИГИ Постона и Стюарта "Теория катастроф и ее приложения" (М.: Мир, 1980)).
Slodowy P. Simple singularities and simple algebraic groups. Berlin — Heidelberg — New York: Springer — Verlag, 1980. — 175 p. (Lect. Notes Math., v. 815).
Siersma D. Singularities of functions on boundaries, corners etc. // Q. J. Math. Oxf. 1981. — V. 32. — Ser. II. — P. 119 — 127.
Матов В. И. Особенности функций максимума на многообразиях с краем // Тр. семинара им. И. Г. Петровского. — 1981. — Т. 6. — С. 195 — 222.
Матов В. И. Унимодальные и бимодальные ростки функций на многообразиях с краем // Тр. семинара им. И. Г. Петровского. — 1981. — Т. 7. — С. 174 — 189.
Щербак И. Г. Двойственность краевых особенностей // Успехи мат. наук. — 1984. — Т. 39, вып. 2. — С. 207 — 208.
Щербак И. Г. Фокальное множество поверхности с краем и каустики групп, порожденных отражениями Вk, Сk и F4 // Функцион. анализ и его прил. — 1984. — Т. 18, вып. 1.- С. 90 — 91.
Щербак И. Г. Краевые особенности с простым разложением // Тр. семинара им. И. Г. Петровского.- 1990,- Т. 15.
Nguyen buu Duc, Nguyen tien Dai. Stabilite de l'interaction geometrique entre deux composantes holonomes simples // С. R. Acad. Sci. Paris, Ser. A. — 1980. — V. 291. — P. 113 — 116.
Ильюта Г. Г. Монодромия и исчезающие циклы для краевых особенностей // Функцион анализ и его прил. — 1985. — Т. 19, вып. 3. — С. 11 — 21.
Группы H 3и Н 4:
Ляшко О. В. Классификация критических точек функций на многообразии с особым краем // Функцион. анализ и его прил. — 1983. — Т. 17, вып. 3. — С. 28 — 36.
Щербак О. П. Особенности семейств эвольвент в окрестности точки перегиба кривой и группа Н3, порожденная отражениями // Функцион. анализ и его прил. — 1983. — Т. 17, вып. 4. — С. 70-72.
Арнольд В. И. Особенности в вариационном исчислении // Успехи мат. наук. — 1984. — Т. 39, вып. 5. — С. 256.
Arnold V. I. Singularities of ray systems // Proc. of the International Congress of Mathematicians, August 16 — 24, 1983. Warszawa. — North-Holland 1984. — V. 1. — P. 27 — 49.
Варченко A. H., Чмутов С. В. Конечные неприводимые группы, порожденные отражениями, являются группами монодромии подходящих особенностей // Функцион. анализ и его прил. — 1984. — Т. 18, вып. 3. — С. 1 — 13.
Гивенталь А. Б. Особые лагранжевы многообразия и их лагранжевы отображения // Современные проблемы математики. — М.: ВИНИТИ. 1988. — Т. 33. — С. 55 — 112. — (Итоги науки и техники.)
Щербак О. П. Волновые фронты и группы отражений // Успехи мат. наук. — 1988. — Т. 43, вып. 3. — С. 125 — 160.
Читать дальше