Для определения истинных размеров треугольника ABC нужно совместить плоскость Р с горизонтальной плоскостью путем вращения около горизонтального следа P h.
Чтобы построить развертку, надо иметь все необходимые элементы на эпюре, основание проектируется без искажения на горизонтальную плоскость, а все ребра с точками пересечения – на фронтальную плоскость.
Начинать построение развертки следует с ребра КК 1, поместив его где-нибудь в стороне. На рисунке 96 показаны вспомогательные прямые, проведенные перпендикулярно ребру КК 1. После этого от точки К вправо откладывается отрезок KL , равный стороне основания k l. Затем проводят второе ребро LL 1, завершая построение натурального изображения грани KK 1 LL 1. Далее справа от этой грани строят натуральное изображение следующей грани LL 1 M 1 M и продолжают до тех пор, пока не будет целиком построена развертка боковой поверхности призмы.
После этих действий на всех ребрах отмечают точки А, В и С , откладывая на развертке KA = ḱá, LB = ĺb́ и МС = ḿс́ .
Отметим, что на развертке отрезки АВ, ВС и СА имеют натуральные размераы сторон треугольника сечения, который показан на чертеже слева в натуральную величину (треугольник ABC ). В связи с этим данные отрезки должны быть равны соответствующим сторонам треугольника. Проверкой точности построения является равенство этих отрезков на чертеже.
Теперь осталось только пристроить к развертке боковой поверхности призмы верхнее и нижнее основания, т. е. два треугольника MKL и M 1 K 1 L 1. При этом каждый из треугольников строится по трем сторонам.
На рисунке 97 показано пересечение поверхности призмы горизонтально-проецирующей плоскостью Q . Здесь сечением является прямоугольник АА 1 В 1 В , одна пара сторон которого АВ и A 1 B 1проецируется без искажения на горизонтальную плоскость, а вторая пара AA 1и ВВ 1– на фронтальную и профильную плоскости.
Пусть натуральные размеры обеих сторон прямоугольника АА 1 В 1 В даны, но в разных местах. Для построения прямоугольника в натуральную величину нужно через а и b провести прямые перпендикулярно q , затем наметить на них где-нибудь положение точек А и В ( AB ⊥ aA ). После этого откладываются от точек А к В на вспомогательных линиях натуральные размеры сторон АА 1и ВВ 1, при этом их берут с фронтальной проекции.
Строя натуральную величину сечения, мы как бы совместили прямоугольник с горизонтальной плоскостью, вращая его около горизонтального следа АВ ( АВ = аb ). После чего для удобства немного отодвинули это изображение от линии q .
Построение натурального вида прямоугольника
сечения весьма удобно делать слева от фронтальной проекции призмы (прямоугольник ABB 1 A 1).
На рисунке 98 показано пересечение поверхности пирамиды фронтально-проектирующей плоскостью Р . На рисунке 98б изображена фронтальная проекция а точки встречи ребра KS с плоскостью P . Она определяется пересечением следа P vс фронтальной проекцией ребра ḱś (рис. 98 а). Если фронтальная проекция а́ точки А дана, то легко найти её горизонтальную проекцию а .
На рисунке 98, б показаны натуральные размеры ABC сечения ABC , которые были определены совмещением его с горизонтальной плоскостью путем вращения около следа P h. Отдельно на этом рисунке показаны элементы, которые необходимы для построения развертки. Натуральные размеры ребер пирамиды можно найти путём вращения их около оси, проходящей через вершину S перпендикулярно горизонтальной плоскости, как показано на рисунке 98 в. На рисунке 98 г показана развертка, а изображение каждого из треугольников, входящих в состав развертки, можно построить по трём его сторонам – ребрам.
Читать дальше
Конец ознакомительного отрывка
Купить книгу