Ю. Щербакова - Начертательная геометрия - конспект лекций

Здесь есть возможность читать онлайн «Ю. Щербакова - Начертательная геометрия - конспект лекций» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2007, ISBN: 2007, Издательство: Array Конспекты, шпаргалки, учебники «ЭКСМО», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Начертательная геометрия: конспект лекций: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Начертательная геометрия: конспект лекций»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие представляет собой курс лекций и предназначено для студентов, сдающих экзамен по специальности «Начертательная геометрия».
Подготовлено с учетом требований Министерства образования РФ.

Начертательная геометрия: конспект лекций — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Начертательная геометрия: конспект лекций», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Проецирующие плоскости – это плоскости, которые перпендикулярны одной, и только одной, плоскости проекций.

На рисунке 46 показана горизонтально-проектирующая плоскость Р , которая перпендикулярна горизонтальной плоскости; на рисунке 47 – фронтально-проектирующая плоскость Q , которая перпендикулярна фронтальной плоскости, и на рисунке 48 – профильно-проектирующая плоскость R, которая перпендикулярна профильной плоскости.

Среди свойств проецирующих плоскостей можно выделить следующие 1 На одну из - фото 36

Среди свойств проецирующих плоскостей можно выделить следующие.

1. На одну из плоскостей проекций, т. е. на ту, которой данная плоскость перпендикулярна, эта плоскость проецируется в виде прямой линии. В этом случае говорят о проекции плоскости, подразумевая под ней именно эту прямую. Горизонтальнопроектирующая плоскость Р имеет горизонтальную проекцию р (рис. 46), фронтально-проецирующая плоскость Q – фронтальную проекцию (рис. 47), а профильно-проецирующая R – профильную проекцию (рис. 48). Данные проекции совпадают с одноименными следами плоскостей, т. е. p = P h(рис. 46), = Q v(рис. 47) и = R w(рис. 48).

2 Любая фигура которая лежит в проецирующей плоскости проецируется в виде - фото 37

2. Любая фигура, которая лежит в проецирующей плоскости, проецируется в виде отрезка прямой на плоскость проекций, перпендикулярную данной плоскости, т. е. треугольник ABC, который лежит в плоскости Р (рис. 46), имеет горизонтальную проекцию abc на горизонтальной проекции плоскости Р ( р = P h).

3. Фронтали горизонтально-проецирующей плоскости Р (рис. 47) перпендикулярны горизонтальной плоскости, а горизонтали фронтально-проектирующей плоскости Q (рис. 47) перпендикулярны фронтальной плоскости, т. е. перпендикулярность фронталей горизонтальной плоскости определяет горизонтально-проектирующую плоскость, а перпендикулярность горизонталей фронтальной плоскости является признаком фронтально-проектирующей плоскости. Профильно-проектирующая плоскость Р (рис. 47) имеет горизонтали, которые являются одновременно и фронталями; те и другие в этом случае перпендикулярны профильной плоскости.

4 Горизонтальнопроектирующая плоскость Р параллельна оси z поэтому ее следы - фото 38

4. Горизонтально-проектирующая плоскость Р параллельна оси z , поэтому ее следы РP wтакже являются параллельными оси z . Фронтально-проектирующая плоскость Q параллельна оси у , поэтому QQ wпараллельны оси у. Профильно-проектирующая плоскость R параллельна оси х, и ее следы RR vпараллельны оси х . Третьи следы этих плоскостей, а именно P h, QR w, способны занимать любое положение относительно осей проекций в зависимости от углов наклона этих плоскостей к плоскостям проекций.

5. Проектирующие плоскости с плоскостями проекции образуют углы, размеры которых видны на эпюре. На рисунках 46, 47 и 48 обозначен буквой угол между проектирующей плоскостью и горизонтальной плоскостью, буквой – угол с фронтальной плоскостью и буквой – с профильной плоскостью. Важно, что для данных плоскостей один из этих углов обязательно прямой, а два остальных угла составляют в сумме 90°. Данные два угла на эпюре равны углам, которые образуются следами плоскости с осями проекций.

Рассмотрим плоскость которая содержит ось х Эта плоскость рис 49 - фото 39

Рассмотрим плоскость, которая содержит ось х . Эта плоскость (рис. 49) принадлежит к числу профильно-проектирующих; она перпендикулярна профильной плоскости W , так как содержит ось х.

При этом горизонтальный и фронтальный следы RR vсливаются с осью х и не определяют положения плоскости R в пространстве. Для определения плоскости нужно дополнительно задать ее профильную проекцию ( = R w) (рис. 49) или указать положение какой-либо точки А на этой плоскости (рис. 49).

Лекция № 5. Взаимное расположение прямых и плоскостей

1. Взаимное расположение двух плоскостей

Для двух плоскостей возможны следующие варианты взаимного расположения: они параллельны или пересекаются по прямой линии.

Из стереометрии известно, что две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Это условие называют признаком параллельности плоскостей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Начертательная геометрия: конспект лекций»

Представляем Вашему вниманию похожие книги на «Начертательная геометрия: конспект лекций» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Начертательная геометрия: конспект лекций»

Обсуждение, отзывы о книге «Начертательная геометрия: конспект лекций» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x