Аналогично можно доказать, что и любые другие одноименные проекции обеих прямых также будут параллельны друг другу.
Верно и обратное утверждение: прямые параллельны, если на эпюре их одноименные проекции параллельны.
Если известно, что горизонтальные и фронтальные проекции прямых I и II параллельны, будет справедливо следующее: 1 || 2 и 1́|| 2́ (рис. 29).
В этом случае можно сказать, что плоскости Р Iи Р II, проецирующие прямые I и II на горизонтальную плоскость, параллельны, так как в этих плоскостях можно указать по паре пересекающихся соответственно параллельных прямых (прямые 1 и 2 и проецирующие лучи). Аналогично плоскости Q Iи Q IIбудут параллельны.
Прямая I находится в пересечении плоскостей Р Iи Q I, а прямая II – в пересечении плоскостей Р IIQ II. Отсюда получаем, что прямая I параллельна плоскости Р II, потому что находится в плоскости, ей параллельной. Однако прямая I параллельна и плоскости Q II. Поэтому прямая I параллельна линии пересечения плоскостей Р IIи Q II, т. е. прямой II.
Доказательство обратного утверждения не имеет смысла для профильных прямых. Это объясняется тем, что тогда вместо двух плоскостей, проецирующих прямую на горизонтальную и фронтальную плоскости, существует только одна, дважды проецирующая плоскость (рис. 30).
Видно, что вне зависимости от расположения двух профильных прямых I и II в пространстве их горизонтальные и фронтальные проекции всегда параллельны (или сливаются).
Прямые будут являться скрещивающимися, если они не параллельны и не пересекаются. Это вытекает из того, что возможны только три случая взаимного расположения прямых.
Для скрещивающихся прямых справедливы утверждения:
1) точки пересечения одноименных проекций на горизонтальной и фронтальной плоскостях не лежат на одном перпендикуляре к оси х (прямые I и II на рис. 31).
2) хотя бы в одной паре одноименные проекции не параллельны (прямые III и IV на рис. 31).
Рисунок 31 показывает проекции четырех прямых, любая пара из которых скрещивается.
Как и в рассмотренных ранее случаях, обратное утверждение для скрещивающихся прямых несправедливо при условии, что хотя бы одна из прямых является профильной.
5. Перпендикулярные прямые
Рассмотрим теорему: если одна сторона прямого угла параллельна плоскости проекций (или лежит в ней), то прямой угол проецируется на эту плоскость без искажения.
Приведем доказательство для прямого угла ABC , одна сторона которого ВС параллельна горизонтальной плоскости (рис. 32).
Плоскость, в которой находится сторона угла АВ и ее проекция ab , перпендикулярна горизонтальной плоскости, так как содержит перпендикуляр Вb к этой плоскости. Прямая ВС перпендикулярна плоскости Q вследствие ее перпендикулярности двум пересекающимся прямым этой плоскости ( АВ и Вb ). Прямая bc параллельна ВС , т. е. она также перпендикулярна Q , а значит и прямой ab , которая лежит в ней.
Ясно, что если на эпюре одна пара одноименных проекций двух прямых перпендикулярна, а одна из двух остальных проекций параллельна оси х , то такие прямые образуют в пространстве прямой угол.
Предположим, что ab ⊥ bc, b́с́ || x.
Это показано на рисунке 33.
Можно провести через проекцию аb плоскость Q , проектирующую прямую АВ на горизонтальную плоскость (рис. 33). Проекция bсперпендикулярна плоскости Q вследствие того, что она перпендикулярна двум прямым этой плоскости, т. е. проекции аb (по условию), и проецирующему лучу Вb как перпендикуляру горизонтальной плоскости.
Прямая ВС является параллельной горизонтальной плоскости, так как ее фронтальная проекция bс параллельна оси х , поэтому она параллельна своей горизонтальной проекции, т. е. справедливо выражение ВС || bс . Следовательно, прямая ВС перпендикулярна плоскости Q и поэтому перпендикулярна прямой АВ вне зависимости от ее положения в плоскости Q .
Читать дальше
Конец ознакомительного отрывка
Купить книгу