Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам

Здесь есть возможность читать онлайн «Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Альпина Паблишер, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Стратегии решения математических задач. Различные подходы к типовым задачам: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Стратегии решения математических задач. Различные подходы к типовым задачам»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.
В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике. Для каждой задачи авторы приводят сначала стандартное решение, а затем более элегантный и необычный метод. Так вы узнаете, насколько рассматриваемая стратегия облегчает поиск ответа.

Стратегии решения математических задач. Различные подходы к типовым задачам — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Стратегии решения математических задач. Различные подходы к типовым задачам», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Возьмем для примера математическую задачу, в которой изначально мало кто ожидает использования визуального представления.

У г-на Адамса есть два теста в запасе для выпускного экзамена по алгебре, которые он хочет использовать в двух классах. В каждом тесте 26 разных вопросов. Он берет первые четыре вопроса из теста 1 и добавляет их в конец теста 2. Затем он берет четыре первых вопроса из теста 2 и добавляет их в конец теста 1. В каждом тесте теперь 30 вопросов. Сколько одинаковых вопросов в обоих тестах?

Ситуацию до и после перестановок можно представить схематично, или визуализировать ее:

Теперь видно что тесты содержат восемь одинаковых вопросов а именно 1 2 3 - фото 196

Теперь видно, что тесты содержат восемь одинаковых вопросов, а именно 1, 2, 3, 4 и A, B, C, D. Хотя в этом случае не обязательно использовать визуальное представление, и задачу можно решить другими методами, создание схемы позволяет увидеть , что происходит. Такой подход облегчает поиск решения. Имейте в виду, когда мы говорим о визуальном представлении, не обязательно подразумевается «вычерчивание» чего-либо.

Вот еще одна задача, где визуальное представление помогает увидеть происходящее.

Длина стороны равностороннего треугольника равна 40 см. Средние точки сторон соединяются так, что образуется второй равносторонний треугольник. Средние точки сторон этого треугольника соединяются так, что образуется третий треугольник. Этот процесс продолжается до тех пор, пока мы не получим пять треугольников. Чему равен периметр пятого треугольника?

Излишне говорить, что в случае решения геометрической задачи — даже такой, которую легко изложить на словах, — построение чертежа очень полезно, а то и просто необходимо. Нам нужно видеть, о чем идет речь (рис. 8.1).

Чертеж должен показывать, что отрезок, соединяющий средние точки двух сторон треугольника, равен половине длины третьей стороны и параллелен ей. Таким образом, каждая сторона любого нашего треугольника равна картинка 197длины соответствующей стороны предыдущего треугольника. Периметр каждого последующего треугольника равен половине периметра предыдущего треугольника. Для полной ясности составим таблицу, отражающую процесс.

Периметр пятого треугольника равен 75 см Сделанный нами чертеж помог - фото 198 Периметр пятого треугольника равен 75 см Сделанный нами чертеж помог - фото 199

Периметр пятого треугольника равен 7,5 см. Сделанный нами чертеж помог визуализировать ситуацию и решить задачу. Хотя решить ее можно и без рисунка, глядя на чертеж, легче найти ответ.

Чтобы подчеркнуть ценность использования схематичного представления, когда это напрямую не требуется в условиях, рассмотрим такую задачу.

В 5:00 часы бьют пять раз в течение 5 секунд. Сколько времени потребуется этим часам, чтобы пробить 10 раз в 10:00? (Предполагается, что на сами удары часов время не требуется.)

Ответ 10 секунд неверен ! Характер этой задачи не предполагает создание каких-либо рисунков. Тем не менее представим ситуацию схематично, чтобы увидеть суть происходящего. На схеме каждая точка представляет удар часов. На рис. 8.2 мы видим, что общее время боя составляет 5 секунд, а между ударами четыре интервала.

Из этого следует что интервал должен составлять секунды Теперь рассмотрим - фото 200

Из этого следует, что интервал должен составлять секунды Теперь рассмотрим второй случай на рис 83 Здесь мы видим что - фото 201секунды. Теперь рассмотрим второй случай на рис. 8.3.

Здесь мы видим что между 10 ударами девять интервалов Поскольку интервал - фото 202

Здесь мы видим, что между 10 ударами девять интервалов. Поскольку интервал равен картинка 203секунды, продолжительность боя часов в 10:00 составит картинка 204или картинка 205секунды.

Схема значительно упростила задачу, которая иначе могла сбить человека с толку.

Стратегия составления схем или диаграмм, когда они не требуются по условиям задачи, нередко помогает найти решение, а в некоторых случаях прямо дает ответ, особенно в несложных задачах, где визуальное представление делает решение очевидным.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Стратегии решения математических задач. Различные подходы к типовым задачам»

Представляем Вашему вниманию похожие книги на «Стратегии решения математических задач. Различные подходы к типовым задачам» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Стратегии решения математических задач. Различные подходы к типовым задачам»

Обсуждение, отзывы о книге «Стратегии решения математических задач. Различные подходы к типовым задачам» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x