Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам

Здесь есть возможность читать онлайн «Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Альпина Паблишер, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Стратегии решения математических задач. Различные подходы к типовым задачам: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Стратегии решения математических задач. Различные подходы к типовым задачам»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.
В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике. Для каждой задачи авторы приводят сначала стандартное решение, а затем более элегантный и необычный метод. Так вы узнаете, насколько рассматриваемая стратегия облегчает поиск ответа.

Стратегии решения математических задач. Различные подходы к типовым задачам — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Стратегии решения математических задач. Различные подходы к типовым задачам», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Задача 7.4

Джером открыл свое первое предприятие по прокату каяков. За прокат он берет почасовую оплату. Каякам присваиваются идентификационные номера, на каждом из них стоят три цифры. Первая цифра — это номер предприятия, а именно 1. Номера у каяков не могут повторяться, а три цифры должны располагаться в возрастающем порядке. Ноль использовать нельзя. Вскоре Джером обнаружил, что использовал все возможные сочетания, которые удовлетворяют условиям. Какое максимальное количество каяков может быть у Джерома?

Обычный подход

Самый распространенный подход — выписывание всех возможных трехзначных чисел, удовлетворяющих условиям задачи. Но как узнать, все ли эти числа учтены? Существует ли метод, обеспечивающий гарантированное решение? Обычный подход явно не самый эффективный!

Образцовое решение

Представим наши данные в табличной форме:

Джером может иметь не более чем 7 6 5 4 3 2 1 28 каяков Задача - фото 178

Джером может иметь не более чем 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28 каяков.

Задача 7.5

Фермер везет яблоки на рынок. Яблоки уложены в шесть ящиков. Весы на пункте взвешивания могут принять за раз только пять ящиков. Нам дают результаты шести взвешиваний:

Ящик B + ящик C + ящик D + ящик E + ящик F = 200 фунтов;

Ящик A + ящик C + ящик D + ящик E + ящик F = 220 фунтов;

Ящик A + ящик B + ящик D + ящик E + ящик F = 240 фунтов;

Ящик A + ящик B + ящик C + ящик E + ящик F = 260 фунтов;

Ящик A + ящик B + ящик C + ящик D + ящик F = 280 фунтов;

Ящик A + ящик B + ящик C + ящик D + ящик E = 300 фунтов.

Сколько фунтов яблок в каждом ящике?

Обычный подход

Эту задачу можно решить алгебраически, составив шесть уравнений с шестью неизвестными:

B + C + D + E + F = 200;

A + C + D + E + F = 220;

A + B + D + E + F = 240;

A + B + C + E + F = 260;

A + B + C + D + F = 280;

A + B + C + D + E = 300.

Решение шести уравнений довольно трудоемко, поэтому попробуем поискать другой подход к этой задаче.

Образцовое решение

С помощью нашей стратегии организации данных можно упростить решение задачи и сделать его изящным. Начнем с представления данных в табличной форме:

Мы опять получили довольно громоздкий набор уравнений но можно посмотреть на - фото 179

Мы опять получили довольно громоздкий набор уравнений, но можно посмотреть на них с другой точки зрения и организовать данные вертикально, просуммировав колонки в вертикальном направлении:

5A + 5B + 5C + 5D + 5E + 5F = 1500.

Разделив обе стороны уравнения на 5, мы получаем:

A + B + C + D + E + F = 300.

Однако шестое взвешивание в таблице показывает, что A + B + C + D + E = 300 фунтам. Следовательно, ящик F должен весить 0 фунтов. Обратимся затем к пятому взвешиванию, которое показывает, что A + B + C + D + F = 280 фунтам. Однако мы уже знаем, что F = 0, а значит A + B + C + D = 280.

Вернемся к шестому взвешиванию — A + B + C + D + E = 300, вычтем из него последнее уравнение и получим E = 20фунтов.

Из четвертого взвешивания следует, что A + B + C + E + F = 260. Подставив в это уравнение уже известные значения F и E, мы получим A + B + C + 20 + 0 = 260, или A + B + C = 240. Подставляя это значение в пятое взвешивание, находим D = 40.

Если вычесть уравнение третьего взвешивания из уравнения четвертого взвешивания, то, зная, что F = 0, мы получаем:

Поскольку D 40 мы получаем C 60 Подставим известные значения в уравнение - фото 180

Поскольку D = 40, мы получаем C = 60.

Подставим известные значения в уравнение первого взвешивания: B + C + D + E + F = 200 = B + 60 + 40 + 20 + 0. Таким образом, B = 80.

Поступив аналогичным образом с уравнением второго взвешивания, получим A = 100.

Использование табличной формы сделало данные более понятными и позволило решить задачу путем логических рассуждений.

Задача 7.6

Даны трехзначные числа, которые составлены исключительно из нечетных цифр. Чему равна сумма всех этих чисел?

Обычный подход

Обычно при решении задачи такого типа начинают составлять список нечетных чисел в том или ином порядке, а потом долго складывают их.

Образцовое решение

Главное здесь — организовать числа логичным образом. Например, наш список может выглядеть так: 111 + 113 + 115 + 117 + 119 + 133 + 135 + 137 + 139 + … + 511 + 513 + 515 + 517 + 519 + … + 991 + 993 + 995 + 997 + 999. Поскольку всего пять цифр могут находиться в каждом из трех разрядов, существует 5 × 5 × 5 = 125 возможных чисел. Если подойти к делу организованно, то можно складывать эти числа парами: первое и последнее, второе и предпоследнее и т. д. Сумма каждой из этих пар равна 1110. В нашем списке пар чисел Таким образом сумма этих чисел составляет Данные можно организовать - фото 181чисел. Таким образом, сумма этих чисел составляет Данные можно организовать подругому и также получить довольно изящное решение - фото 182

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Стратегии решения математических задач. Различные подходы к типовым задачам»

Представляем Вашему вниманию похожие книги на «Стратегии решения математических задач. Различные подходы к типовым задачам» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Стратегии решения математических задач. Различные подходы к типовым задачам»

Обсуждение, отзывы о книге «Стратегии решения математических задач. Различные подходы к типовым задачам» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x