Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам

Здесь есть возможность читать онлайн «Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Альпина Паблишер, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Стратегии решения математических задач. Различные подходы к типовым задачам: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Стратегии решения математических задач. Различные подходы к типовым задачам»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.
В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике. Для каждой задачи авторы приводят сначала стандартное решение, а затем более элегантный и необычный метод. Так вы узнаете, насколько рассматриваемая стратегия облегчает поиск ответа.

Стратегии решения математических задач. Различные подходы к типовым задачам — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Стратегии решения математических задач. Различные подходы к типовым задачам», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Образцовое решение

Более рациональный подход к этой задаче предполагает анализ с использованием визуального представления. Нарисуем календарь и просто поставим инициалы молодых людей в клетках с теми датами, в которые они работают.

В те даты где стоят инициалы обоих молодых людей они работают вместе На - фото 219

В те даты, где стоят инициалы обоих молодых людей, они работают вместе. На рисунке эти даты ясно видны: 13 и 25 марта.

Эту задачу можно решить еще одним способом, если посмотреть на нее с другой точки зрения. Известно, что числа 4 и 3 являются взаимно простыми и представляют количество дней в рабочем цикле каждого молодого человека, соответственно. Их общее кратное, 12, дает дни между датами, в которые они работают вместе. Таким образом, 1 + 12 = 13 — это день, когда молодые люди работают вместе после первого дня, а 13 + 12 = 25 — это день, в который они работают вместе в следующий раз.

Задача 8.5

На местной ярмарке несколько работников занимаются отслеживанием количества людей, принимающих участие в конкретных мероприятиях каждый день. Записи Розалинды показывают, что с понедельника до субботы включительно стенд для стрельбы из лука посетили 510 человек. По подсчетам Габиэля с понедельника по среду включительно на этом стенде побывали 392 человека, а Фрэнк насчитал там во вторник и в пятницу 220 человек. Адель работала в среду, четверг и субботу и у нее получилось в сумме 208 человек. Наконец, в записях Альфреда значилось, что с четверга по субботу включительно на стенде побывали 118 человек. Если предположить, что все эти данные правильны, то сколько человек посетили стенд для стрельбы из лука в понедельник?

Обычный подход

Как правило, начинают составлять ряды уравнений, в которых переменные представляют разные дни недели. В результате получается пять уравнений первой степени с шестью неизвестными. Конечно, не все неизвестные встречаются в каждом уравнении.

Решив эту систему уравнений можно попытаться найти ответ Однако этот процесс - фото 220

Решив эту систему уравнений, можно попытаться найти ответ. Однако этот процесс довольно сложен и большинству не под силу. (Мало кто догадывается, что в результате вычитания уравнений 8.3 и 8.4 из уравнения 8.1 получается Пн. = 82.)

Образцовое решение

Визуализируем условия задачи в виде таблицы посещаемости стенда:

Обратите внимание на то что за исключением понедельника каждый день - фото 221

Обратите внимание на то, что за исключением понедельника каждый день упоминается три раза. Это приводит к двойному учету посетителей четырьмя последними учетчиками во все дни кроме понедельника. Таким образом, мы получаем одно уравнение:

2 × 510 − (392 + 220 + 208 + 118) = количество посетителей в понедельник; 1020 − 938 = 82.

В понедельник стенд посетили 82 человека.

Задача 8.6

Аманда, Айан, Сара и Эмили выставили своих лягушек для участия в соревнованиях на дальность прыжка на ярмарке. Лягушка Аманды опередила лягушку Эмили, но оказалась не первой. Лягушка Сары проиграла лягушке Аманды, но была не последней. Как распределились места лягушек?

Обычный подход

Чаще всего берут четыре фишки, жетона или монеты, наклеивают на них стикер с именем владельца и переставляют этих «лягушек» до тех пор, пока результат не будет удовлетворять условиям задачи.

Образцовое решение

Эту задачу проще решить с использованием визуального представления. Прежде всего, мы знаем, что лягушка Аманды опередила лягушку Эмили, но была не первой. Обозначим это схематично так:

Стратегии решения математических задач Различные подходы к типовым задачам - изображение 222

Лягушка Сары проиграла лягушке Аманды, но была не последней. Продолжив построение схемы, мы получаем следующее распределение мест:

Схема позволила легко увидеть порядок в котором распределились места Задача - фото 223

Схема позволила легко увидеть порядок, в котором распределились места.

Задача 8.7

Из 40 мальчиков в оздоровительном лагере «Кэмп-Уолден» 14 участвовали в заплыве на озере, 13 играли в баскетбол, а 16 ходили в поход. Трое мальчиков играли в баскетбол и участвовали в заплыве. Пять мальчиков участвовали в заплыве и ходили в поход. Восьмеро мальчиков играли в баскетбол и ходили в поход, а двое мальчиков участвовали во всех трех спортивных мероприятиях. Сколько мальчиков в этом лагере не участвовали ни в чем?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Стратегии решения математических задач. Различные подходы к типовым задачам»

Представляем Вашему вниманию похожие книги на «Стратегии решения математических задач. Различные подходы к типовым задачам» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Стратегии решения математических задач. Различные подходы к типовым задачам»

Обсуждение, отзывы о книге «Стратегии решения математических задач. Различные подходы к типовым задачам» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x