Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам

Здесь есть возможность читать онлайн «Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Альпина Паблишер, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Стратегии решения математических задач. Различные подходы к типовым задачам: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Стратегии решения математических задач. Различные подходы к типовым задачам»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.
В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике. Для каждой задачи авторы приводят сначала стандартное решение, а затем более элегантный и необычный метод. Так вы узнаете, насколько рассматриваемая стратегия облегчает поиск ответа.

Стратегии решения математических задач. Различные подходы к типовым задачам — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Стратегии решения математических задач. Различные подходы к типовым задачам», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Обычный подход Очевидный подход найти площадь каждого из четырех - фото 104

Обычный подход

Очевидный подход — найти площадь каждого из четырех треугольников и сложить их. Во всех четырех случаях высота треугольника равна ширине прямоугольника AK = 8. Таким образом, площади четырех треугольников составляет:

Сумма этих площадей равна 4 24 16 8 52 Образцовое решение - фото 105

Сумма этих площадей равна 4 + 24 + 16 + 8 = 52.

Образцовое решение

Воспользуемся нашей стратегией принятия другой точки зрения на решение задачи. Треугольники имеют одну и ту же высоту, а именно 8. Сумма оснований четырех треугольников равна длине прямоугольника, т. е. 13. Таким образом, площадь четырех закрашенных треугольников равна половине площади прямоугольника, или Стратегии решения математических задач Различные подходы к типовым задачам - изображение 106

Задача 4.12

Определите, сколько чисел можно составить из цифр от 1 до 9 при условии, что цифры в этих числах должны располагаться в порядке возрастания.

Обычный подход

Большинство людей, скорее всего, воспользуются методом проб и ошибок и попытаются выяснить, нет ли здесь какой закономерности, и будут добавлять в список одно число за другим, т. е. сначала однозначные числа, затем двухзначные, трехзначные и т. д. Если выполнить эту работу тщательно, то можно получить правильный ответ, однако такой подход трудоемок.

Образцовое решение

Рассмотрим сначала набор целых чисел, имеющихся в нашем распоряжении {1, 2, 3, 4, 5, 6, 7, 8, 9}. Каждое подмножество этих цифр, за исключением пустого, должно давать одно из искомых чисел. Например, подмножество {3, 5, 7, 9} дает число 3579. Вопрос в том, сколько таких подмножеств можно выделить в нашем ряду из девяти цифр. Их количество равно 2 9= 512. Вместе с тем сюда вошло пустое подмножество, которое необходимо вычесть. Таким образом, мы получаем 2 9— 1 = 511 подмножеств из 9 цифр, каждое из которых дает число, где в соответствии с условием задачи, цифры могут располагаться в порядке возрастания.

Задача 4.13

На рис. 4.4 показан равнобедренный треугольник с бесконечным рядом окружностей, каждая из которых касается двух равных сторон треугольника и соседних окружностей, а нижняя окружность касается основания треугольника. Стороны равнобедренного треугольника равны 13, 13 и 10. Чему равна сумма длин этих окружностей?

Обычный подход Занудный по определению подход предполагает вычисление длины - фото 107

Обычный подход

Занудный по определению подход предполагает вычисление длины каждой окружности с последующим определением суммы их длин. Подсчеты в этом случае очень трудоемки, но при тщательном выполнении они могут дать правильный ответ.

Образцовое решение

Воспользуемся стратегией рассмотрения задачи с другой точки зрения. С помощью теоремы Пифагора находим, что высота равнобедренного треугольника равна 12. Заметим, что сумма диаметров бесконечного числа окружностей равна высоте равнобедренного треугольника. Таким образом, сумма длин окружностей равна сумме диаметров, умноженной на π , т. е. 12 π .

Задача 4.14

Чему равен наименьший неотрицательный остаток при делении 22 7на 123?

Обычный подход

Как правило, при решении этой задачи люди тратят кучу времени на определение значения числа 22 7, а потом делят результат на 123.

Образцовое решение

Мы подойдем к решению задачи с другой точки зрения. Вместо развертывания 22 7в число без степени разложим его на числа в степени:

22 7= (2 7) (11 7) = (2 7) (11 2) (11 2) (11 2) (11) = (123 + 5) (123–2) (123–2) (123–2) (11).

Теперь вспомним, что произведение двух двучленов вида 123 + s и 123 + t можно представить как 123 k + st :

(123 + s ) (123 + t ) = 123 2+ 123 s + 123 t + st = 123 (123 + s + t ) + st = 123 k + st .

Таким образом, мы получаем:

123 n — 440 = 123 n − 492 + 52 = 123 ( n − 4) + 52.

При делении числа 22 7на 123 остаток равен 52.

Задача 4.15

Во время футбольного матча команды получают 2 очка за сейфти, 3 очка за гол в ворота и 7 очков за тачдаун. Если отбросить 2 очка за сейфти, то команды смогут получать лишь по 3 и по 7 очков. Каково максимальное значение счета, которое нельзя получить в этом матче?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Стратегии решения математических задач. Различные подходы к типовым задачам»

Представляем Вашему вниманию похожие книги на «Стратегии решения математических задач. Различные подходы к типовым задачам» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Стратегии решения математических задач. Различные подходы к типовым задачам»

Обсуждение, отзывы о книге «Стратегии решения математических задач. Различные подходы к типовым задачам» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x