Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам

Здесь есть возможность читать онлайн «Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Альпина Паблишер, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Стратегии решения математических задач. Различные подходы к типовым задачам: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Стратегии решения математических задач. Различные подходы к типовым задачам»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.
В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике. Для каждой задачи авторы приводят сначала стандартное решение, а затем более элегантный и необычный метод. Так вы узнаете, насколько рассматриваемая стратегия облегчает поиск ответа.

Стратегии решения математических задач. Различные подходы к типовым задачам — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Стратегии решения математических задач. Различные подходы к типовым задачам», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Задача 5.2

Даны два параллелограмма ABCD и APQR с точкой P на стороне BC и точкой D на стороне RQ , как показано на рис. 5.1. Если площадь параллелограмма ABCD 18, то чему равна площадь параллелограмма APQR ?

Обычный подход Эта задача не такая уж простая Первая попытка решить ее - фото 114

Обычный подход

Эта задача не такая уж простая. Первая попытка решить ее заключается в поиске признаков конгруэнтности, означающих равенство площадей. Этот метод не дает результата. Более разумно, хотя и не слишком оригинально, провести линию PD , как показано на рис. 5.2.

Теперь можно показать что площадь треугольника APD составляет половину площади - фото 115

Теперь можно показать, что площадь треугольника APD составляет половину площади каждого из двух параллелограммов, поскольку в этот треугольник имеет общее основание с обеими параллелограммами и одинаковую высоту. Хотя это разумный подход к решению довольно сложной задачи, существует более изящный способ ее решения.

Образцовое решение

В условиях задачи просто говорится, что точка P лежит на стороне BC , но не указывается, где именно. Мы можем проанализировать экстремальную ситуацию. Можно, например, представить, что точка P совпадает с точкой B . Аналогичным образом можно представить, что точка D , лежащая на стороне RQ , совпадает с точкой R . В результате такого изменения, которое определенно соответствует исходным условиям задачи, два параллелограмма оказываются наложенными друг на друга и, следовательно, имеющими одну и ту же площадь. Таким образом, площадь параллелограмма APRQ равна 18.

Задача 5.3

Суммарное расстояние между съездами 1 и 20 на новой автомагистрали составляет 140 км. Между любыми двумя съездами должно быть не менее 7 км. Чему равно максимальное расстояние между любыми двумя соседними съездами?

Обычный подход

Обычно пытаются подобрать различные комбинации чисел в надежде найти максимум. Существует, однако, более интересный подход.

Образцовое решение

Воспользуемся стратегией анализа экстремальных ситуаций. Прежде всего отметим, что между съездами 1 и 20 всего 19 «расстояний». Поскольку минимальное расстояние между любыми двумя съездами равно 7 км, рассмотрим экстремальную ситуацию, в которой все расстояния, кроме одного, равны 7 км. Тогда минимальная сумма 18 «расстояний» составит 18 × 7 = 126 км. Таким образом, максимальное расстояние между любыми двумя съездами равно 140–126 = 14 км, иначе не хватит километров, чтобы выдержать 7-километровую дистанцию между остальными съездами.

Задача 5.4

У нас есть две однолитровые бутылки. В одной — пол-литра красного вина, в другой — пол-литра белого. Мы берем столовую ложку красного вина, выливаем его в бутылку с белым вином и взбалтываем смесь. Затем мы берем столовую ложку полученной смеси (красного и белого вина) и выливаем ее в бутылку с красным вином.

Чего больше, красного вина в бутылке с белым вином или белого вина в бутылке с красным вином?

Обычный подход

Существует несколько общепринятых подходов к решению такой задачи, в которых используют полученную из условий информацию, например о столовой ложке, которая может быть излишней. При определенном везении и сообразительности можно получить правильный ответ, однако это дело нелегкое, да и ответ нередко кажется неубедительным.

Образцовое решение

Понятно, что размер ложки не имеет реального значения, и что ложки могут быть как большими, так и маленькими. Допустим, мы используем очень большую столовую ложку, такую, которая вмещает пол-литра жидкости, — это будет экстремальная ситуация. После выливания пол-литра красного вина в бутылку с белым вином смесь будет состоять на 50 % из красного вина и на 50 % из белого. Перемешав смесь, мы берем пол-литровую ложку, наполняем ее и возвращаем смесь обратно в бутылку с красным вином. Смесь теперь одинакова в обеих бутылках. Это и есть наш ответ — красного вина в бутылке с белым вином столько же, сколько белого вина в бутылке с красным вином.

Задача 5.5

Найдите недостающие цифры в следующем семизначном числе, которое равно произведению трех последовательных чисел. Чему равны эти три числа? 1 2_ _ _ _6.

Обычный подход

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Стратегии решения математических задач. Различные подходы к типовым задачам»

Представляем Вашему вниманию похожие книги на «Стратегии решения математических задач. Различные подходы к типовым задачам» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Стратегии решения математических задач. Различные подходы к типовым задачам»

Обсуждение, отзывы о книге «Стратегии решения математических задач. Различные подходы к типовым задачам» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x