Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Здесь есть возможность читать онлайн «Борис Бирюков - Жар холодных числ и пафос бесстрастной логики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1977, Издательство: Издательство Знание, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Жар холодных числ и пафос бесстрастной логики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Жар холодных числ и пафос бесстрастной логики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Жар холодных числ и пафос бесстрастной логики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Жар холодных числ и пафос бесстрастной логики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

126

9. В основополагающей статье А. Тьюринга (А. М. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. «Proceedings of the London Mathematical Society», Ser. 2, vol. 42, 1936) была не только изложена его «машина», но и дана попытка проанализировать вычислительный процесс вообще. Обширный фрагмент из этой статьи Тьюринга можно в русском переводе найти в кн.: М. Минскии. Вычисления и автоматы. М., 1971, с. 138—142. Там же читатель найдет подробное описание Тьюринговых машин. Обращаем внимание на то, что наше изложение машины Тьюринга в соответствии с традицией, принятой в современных работах, в ряде непринципиальных пунктов отличается от тьюрингова.

127

10. Отметим, что приведенные нами машины Тьюринга, работающие над целыми положительными числами, служат лишь иллюстрацией тьюринговой формализации вычислительного процесса

128

11. Об упомянутых—и других—видах автоматов можно прочесть в интересной книге М. Г. Гаазе-Рапопорта «Автоматы и живые организмы» (М., 1961)

129

12. А. А. Марков. Теория алгорифмов, с. 3 (см. примечание 1)

130

13. С. Я. Яновская. О некоторых чертах развития математической логики и отношении ее к техническим приложениям.— В кн.: Применение логики в науке и технике. М., 1960, с. 10.

131

14. Диофантово уравнение — алгебраическое уравнение с целочисленными коэффициентами, для которого отыскиваются целые решения.

132

15. Проблемы Гильберта. М., 1969, с. 39.

133

16. Ф. П. Варпаховскии. А. Н. Колмогоров. О решении десятой проблемы Гильберта.— «Квант», 1970, № 7 у с. 42.

134

17. Ю. В. Матиясевич. Диофантовость перечислимых множеств.—Доклады АН СССР, 1970, т. !91, № 2.

135

18. А. А. Марков. Теория алгорифмов. См. примечание I.

136

19. Существуют и другие эквивалентные рассмотренным уточнения идеи алгоритма и вычислимой функции и в их числе «финитные комбинаторные процессы» Э. Поста (машина Поста). О машине Поста см. статьи В. А. Успенского в журнале «Математика в школе», 1967, № 1—4.

137

20. А. А. Марков. Теория алгорифмов, с. 92 (см. примечание 1). О философской основе конструктивной математики можно прочесть в кн.: В.Н. Тростников. Конструктивные процессы в математике. (Философский аспект). М., 1975.

138

1. Имеется в виду, что число x представлено в двоичной системе счисления и введено в память ЭВМ. В этом случае проверка условия x = 0 сводится к выяснению того, имеет ли хотя бы один элемент ячейки памяти, отведенной иод данное число, ненулевое значение, что, очевидно, технически нетрудно осуществить. Однако мы не останавливаемся здесь на устройстве ЭВМ и ее памяти, так как нас интересует логико-математическая сторона дела. О техническом аспекте действия ЭВМ и о физической реализации процесса запоминания см., например: Л. Н. Краснухин, П. В. Нестеров. Цифровые вычислительные машины. М. 1974.

139

2. Если функция f частично-рекурсивна, то при некоторых аргументах она может быть не определена, и процесс вычисления никогда не закончится. На первый взгляд рассмотрение в этом месте лишь общерекурсивных функций ограничивает общность рассуждений, однако, как мы увидим несколько ниже, это не так.

140

3. Заметим, что ЭВМ может вычислить или, по крайней мере, пытаться вычислить значение любой частично-рекурсивной функции (заранее не всегда известно, является ли интересующая нас функция общерекурсивной). Ибо, как показал С. К. Клини, каждую частично рекурсивную функцию можно представить в виде суперпозиции двух функций, первая из которых есть результат действия мю-оператора на некоторую примитивно рекурсивную функцию, а вторая — примитивно рекурсивная функция, вообще говоря, не совпадающая с упомянутой ранее.

140

4. И которая, конечно, абсолютно надежна в своем функционировании, то есть не допускает ошибок в переработке данных. Эта идеализация составляет содержание абстракции безошибочности как одного из упрощающих предположений, связанных с идеей эффективной вычислимости и понятием алгоритма. Об этой абстракции см. кн.: Управление, информация, интеллект. Под ред. А. И. Берга и др. М., 1976;

Б. В. Бирюков. Проблема абстракции безошибочности в логике. «Вопросы философии», 1973, №11.

141

5. См, его статьи «Машина для игры в шахматы» и «Составление программ для игры в шахматы на вычислительной машине» в кн.: К. Шеннон. Работы по теории информации и кибернетике. М., 1963. Обе статьи на английском языке впервые были опубликованы в 1950 году.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Жар холодных числ и пафос бесстрастной логики»

Представляем Вашему вниманию похожие книги на «Жар холодных числ и пафос бесстрастной логики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Жар холодных числ и пафос бесстрастной логики»

Обсуждение, отзывы о книге «Жар холодных числ и пафос бесстрастной логики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x