12. См. об этом в кн.: История математики. Т. 1. М., 1970, с. 292 и далее.
13. См. статью Л. Кальмара, указанную в примечании 13 к гл.1, е.188,
14. С основными идеями Г. Кантора можно ознакомиться по трем его работам, имеющимся в русском переводе (опубликованы в издании:
Новые идеи в математике. Вып. 6. Спб, 1914).
15. С. К. Клини. Введение в метаматематику. М., 1957, с. 14.
16. Этот результат был в определенном смысле обобщением следующего свойства конечных множеств. Пусть дано, скажем, множество из трех элементов М = {а, b, с}. Помимо пустого множества, по определению входящего во всякое множество, и самого множества M, входящего в самое себя, в нем содержатся следующие подмножества: {а}, {b}, {с} {а, b}, {а, с}, {b, с}; таким образом, множество всех подмножеств множества из трех элементов содержит 8, или 2 3элементов. Легко доказать, что если исходное множество содержит n элементов, то множество всех его подмножеств будет содержать 2 nэлементов. Поэтому в случае конечных множеств количественное превосходство производного множества над исходным очевидно. Но когда речь идет о бесконечных множествах, вопрос становится не таким просты»: Кантор доказал, что и в этом случае производное множество превзойдет исходное; правда, здесь уже нельзя будет сказать, что в нем окажется больше элементов — и там и там их бесконечно много, а следует говорить, что оно обладает большей мощностью. Термин «мощность» Кантор определил математически строго. См. гл. I книги С. К. Клини, указанной в примечании 15.
17. G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle, 1879; G. Frege. Grundgesetze der Arithmetik, begriffsschrift lich abgeleitet. Bd. I, Jena, 1893; Bd. II, Jena, 1902:
Общую характеристику вклада Фреге в логику и основания математики см. в статье Б. В. Бирюкова «О работах Фреге по философским вопросам математики», помещенной в сборнике «Философские вопросы естествознания», вып. 2, [М], 1959.
18. В рассмотренном нами в гл. 3 исчислении равенств это были знаки → и ≡.
19. При этом в интерпретациях этого исчисления — если не иметь в виду интуиционистскую и подобные ей «неклассические» логики, о которых пойдет речь ниже, присутствуют булевы алгебры.
20. В построении самого Фреге фигурировали не схемы аксиом, а конкретные аксиомы, в связи с чем в числе постулатов имелось еще одно правило вывода — так называемое правило подстановки. Однако мы следуем его системе лишь в самых общих- чертах. Заметим, что символика Фреге резко отличалась от обычной линейной логической и математической символики. Она носила «рисунчатый» характер и не привилась.
21. Используя «родство» эквиваленции (которую без труда можно ввести в исчисление Фреге) с отношением равенства и согласовав выразительные средства этого исчисления со-средствами описанного в гл. 3 исчисления равенств (равносилъноетей) формул, можно показать, что эти исчисления в определенном смысле переводимы друг в друга — имеют одинаковую дедуктивную силу.
22. Ниже излагается лишь общая идея фрегевского определения натуральных чисел. Полностью изложить его подход здесь, разумеется, не представляется возможным.
23. Об определении натуральных чисел как конечных кардинальных чисел (по Кантору) см., например: Н. Бурбаки. Теория множеств. М., 1965, с. 197 и далее.
24. J. van Heienoort. From Frege to Godel. A Source Book in Mathematical Logic. Cambridge (Mass.), 1967, p. 124—125.
25. Под идеографией Рассел имеет в виду логическую символику.
26. В теории Фреге предикаты рассматривались как частный случай функций, а именно, как функции, принимающие в качестве своих значений значения «истинно» и «ложно». Эта точка зрения на предикаты общепринята и в настоящее время при содержательном исследовании закономерностей «мира свойств и отношений».
27. Имеется в виду книга Б; Рассела «Принципы математики», которая вышла два года спустя(В. Russell. The Principles of Mathematics. Cambridge (Engl.), 1993).
28. Этими словами начинается послесловие Фреге ко второму тому «Основных законов арифметики» (с. 253).
29. X. Б. Карри. Основания математической логики. М., 1969, с. 32.
30. См. L. Kreiser. Geschichte und logisch-semantische Probleme des wissenschaftlichen Werkes Fregess. In: G. Frege. Schriften zur Logik. Aus dem Nachlaβ. Berlin. 1973.
31. Это стало известно после опубликования первого тома научного наследства Фреге: G. Frege. Nachgelassene Schriften. Bd. I. Hamburg, 1969. В рецензии на эту книгу, написанной Б. В. Бирюковым и Н. Н. Нуцубидзе и помещенной в издании «Новые книги за рубежом по общественным наукам», 1974, 6, читатель найдет рассказ об эволюции взглядов Фреге под конец жизни и о судьбе его научного наследия, в известном смысле разделившего научную трагедию Фреге.
Читать дальше