22. При другом подходе булевой алгеброй для логической интерпретации нашего аппарата можно считать множество форм высказываний (рассматриваемых с точностью до отождествления равносильных форм) вместе с заданными на них операциями ~, &. V - такая булева алгебра высказываний оказывается алгеброй Линденбаума — Тарского, о которой см.: Е. Расёва, Р. Сикорскии. Математика метаматематики. М., 1972, с. 282 и далее.
23. Заметим, что булеву алгебру можно сформулировать и на основе отношения ≤ (или ≥). См: X. Б. Карри. Основания математической логики. М., 1969.
24. Для этого имеются и другие причины. Дело в том, что в алгебре логики Буля можно определить операцию дизъюнкции, и тогда все равенства, верные в логике высказываний как булевой алгебре, будут верными и в теории Буля; с другой стороны, в рассмотренной нами теории можно определить строгую дизъюнкцию (например, так:
(А V B)≝((A & ~В) V (~А & В)), и тогда теория Буля может быть пред. ставлена как теория булевой алгебры (в узком смысле).
25. Понятие формы класса (классовой формы) следует понимать по аналогии с понятием «форма высказывания».
26. Ср. примечание 14.
27. Заметим, что при проверке схем аксиом, в каждой из которых фигурирует по две формы классов, следует учитывать возможные отношения между двумя произвольными классами а и β. Таких отношений может быть пять: классы а и β совпадают; класс а полностью входит в класс β, причем в β имеются элементы, не принадлежащие а; то же отношение, но с заменой а на β и наоборот; классы а и β имеют общие элементы, причем в а есть элементы, не принадлежащие классу β, и в β есть элементы, не принадлежащие а; классы а и β не имеют общих элементов. Эти отношения можно передать следующими схемами (рис. 7). Проверяя равенство, нужно убедиться в его справедливости при каждом из этих отношений.
28. Абстрактное понятие булевой алгебры есть достижение середины нашего века, в то время как его спецификации — на классах и высказываниях — восходят к логикам прошлого века. Применению аппарата булевой алгебры к исследованию релейно-контактных схем начало положили в 1935—1938 гг. В. И. Шестаков, А. Никасима и К. Шеннон, один из создателей кибернетики (см. его статью «Символический анализ релейных и переключательных схем», в русском переводе опубликованную в кн.: К. Шеннон. Работы по теории информации и кибернетике. М., 1963). «Приоритет в применении аппарата математической логики к вопросам электротехники (связанным с построением релейно-контактных схем), — отмечает С. А. Яновская, принадлежит... В. И. Шестакову, работа которого «Алгебра релейно-контактных схем»... написанная еще в январе 1935г., к сожалению, не была своевременно опубликована, хотя и легла в основу его кандидатской диссертации» (Послесловие редакции в кн: А. Тарекии. Введение в логику и методологию дедуктивных наук. М., 1948. с. 320).
1. Эти — и другие — высказывания выдающихся мыслителей о математике см. в кн.: Е. Т. Веll. Men of Mathematics. N. Y. 1962, XV—XVII.
2. См. об этом в кн.: В. Н. Молодший. Очерки по философским вопросам математики. М., 1969, ч. II, гл. 2.
3. Конечную дробь, то есть (периодическую) дробь с «хвостом» из одних нулей (например, 3,14000...) при этом заменяют бесконечной периодической дробью с девяткой в периоде (в нашем примере— дробью 3,13999...).
4. Если действительное число есть рациональное число, то есть если десятичная дробь является периодической, то с бесконечностью можно «справиться» тривиальным способом, рассматривая число как дробь p/q, где p и q — целые числа, а q отлично от нуля.
5. E. Т. Веll. Men of Mathematics. N. Y., 1962. p. 431.
6. С теорией Дедекинда можно подробнее познакомиться по изложению автора. См.: Р. Дедекинд. Что такое числа и для чего они служат. Казань, 1905.
7. См. Г.М. Фихтенгольц. Основы математического анализа. Т. 1. М., 1960, с. 17.
8. Априори возможен еще случай, когда в левом классе есть наибольшее число, а в правом — наименьшее. Однако нетрудно показать, что такой случай противоречит свойствам сечения.
9. См. об этом подробнее в кн. В. Н. Молодшего, указанной в примечании 2.
10. Б. Рассел. История западной философии. М., 1959, с. 56.
11. Цитируется по кн.: Н. Бурбаки. Очерки по истории математики. М., 1963. с. 29.
Читать дальше