Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Здесь есть возможность читать онлайн «Борис Бирюков - Жар холодных числ и пафос бесстрастной логики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1977, Издательство: Издательство Знание, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Жар холодных числ и пафос бесстрастной логики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Жар холодных числ и пафос бесстрастной логики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Жар холодных числ и пафос бесстрастной логики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Жар холодных числ и пафос бесстрастной логики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Перейдем, однако, к чисто математическому аспекту брауэровской платформы. Ядром здесь является установка на конструктивность [9]и отрицание универсальности закона исключенного третьего — два положения, которые в интуиционистском истолковании являются родственными. Пример поможет понять сущность дела.

Возьмем теорему Больцано — Вейерштрасса о наличии у ограниченной числовой последовательности точки сгущения. Под точкой сгущения последовательности понимается точка числовой оси, к которой как угодно близко подходят точки, представляющие числа данной последовательности. Скажем, для последовательности 1/2, 1/3, 1/4, 1/5,...точкой сгущения является нулевая точка, так как какое бы сколь угодно малое положительное число е мы ни взяли, для него обязательно отыщется член нашей последовательности, отличающийся по своей абсолютной величине от нуля меньше, чем на е.

Теорема Больцано — Вейерштрасса доказывается с помощью дихотомии. Ограниченная последовательность (по определению) может быть целиком заключена в пределы некоторого отрезка числовой оси. Разделим этот отрезок пополам. По меньшей мере на одной из его половин (а может и на обеих) имеется бесконечное множество точек последовательности, иначе, если бы на обеих половинах было конечное число точек, то их вообще было бы конечное число, что противоречит предположению о бесконечности последовательности. Возьмем как раз ту половину, где имеется бесконечное множество точек последовательности, разделим ее снова пополам и повторим рассуждение. В конце концов (при бесконечном продолжении процесса) мы придем к единственной точке, принадлежащей всем нашим уменьшающимся вдвое отрезкам, — это и будет точка сгущения.

В самом деле: если предположить, что эта точка не есть точка сгущения, то вокруг нее существует некоторая зона, где нет точек нашей последовательности; но уменьшающиеся отрезки, каждый из которых содержит не одну, а бесконечное множество точек последовательности, стягиваются вокруг этой точки и рано или поздно войдут в любую зону, как бы мала она ни была. Противоречие и доказывает теорему [10].

Для интуициониста это рассуждение ничего не стоит. Ясно, скажет он, что мы не сможем фактически обнаружить тот отрезок, на котором расположено бесконечное множество членов последовательности. Действительно, как это сделать? Считать число членов, попавших на каждую из половин? Это приведет к цели лишь в том случае, если на одной из половин окажется конечное число членов: тогда мы возьмем другую половину. А если мы считаем, считаем и считаем — и все время и на одной и на другой половине будут обнаруживаться новые точки — тогда как быть? Ведь как бы долго ни происходил этот пересчет, мы не вправе заключить, что точек бесконечное множество: нет гарантии, что они через некоторое время не иссякнут. Поэтому построить точку сгущения таким способом невозможно. А раз так, то из нелепости предположения об отсутствии точки сгущения не следует ее наличие.

Учтя центральное положение теоремы Больцано—Вейерштрасса в дифференциальном исчислении и распространенность в анализе доказательств с подобной же схемой рассуждений, можно представить себе, в какое затрудни» тельное положение попадает математика, если такие рассуждения будут «запрещены» — объявлены нестрогими. Естественно, что программа Брауэра вызвала среди ведущих математиков того времени самое различное отношение - одни приветствовали ее (среди них был, например, Гермад Вейль, решительно выступивший в поддержку Брауэра), другие — а таких было большинство — выступили с резкими возражениями. Самым авторитетным оппонентом интуиционизма стал Давид Гильберт (1862—1943).

Гильберта считают величайшим математиком XX века. Диапазон его работ внушает изумление. Он внес огромный вклад в теорию инвариантов групп и теорию алгебраических чисел, разработал основания геометрии, решил многие проблемы вариационного исчисления, исследовал вопросы дифференциальных уравнений, развил теорию интегральных уравнений, создал аппарат функционального анализа и поставил на новую основу математическую физику. Влияние Гильберта на современную ему математику было невероятным. Геттингенский университет, профессором которого он был с 1902 по 1930 год, стал мировой «Меккой математиков». В 1900 году на Втором Международном конгрессе математиков в Париже Гильберт делал обзорный доклад о проблемах математики в целом — вещь, на которую не отваживался больше никто. В этом знаменательном для истории науки докладе он выдвинул знаменитые двадцать три «проблемы Гильберта», задавшие исследователям работу на десятилетия и в некотором смысле определившие направление поисков.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Жар холодных числ и пафос бесстрастной логики»

Представляем Вашему вниманию похожие книги на «Жар холодных числ и пафос бесстрастной логики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Жар холодных числ и пафос бесстрастной логики»

Обсуждение, отзывы о книге «Жар холодных числ и пафос бесстрастной логики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x