Было бы неправильным усматривать здесь философски неубедительные тенденций. Основная цель науки, по Гильберту, познание мира. Но сущность вещей не лежит в их «верхнем слое», непосредственно открытом чувственному восприятию. Поэтому методологически, неправильно каждую отдельную формулу и каждый отдельный знак «проверять» сопоставлением с действительными объектами. Теория — вещь горазда более сложная, чем простое «фотографирование» объектов. Установив правила работы со знаками с помощью глубинных законов природы или с помощью некоторых» гипотез (которые потом могут быть отвергнуты, если теория: не оправдает себя), на следующем этапе работы мы можем отвлечься: от внешней реальности, вернее, рассматривать в качестве реальности уже не окружающую природу, а саму знаковую систему с ее правилами, каковые, хотя и были установлены нами самими», теперь предстают перед нами как объективная: данность»
Чтобы лучше пояснить сущность гильбертовской идеи «игры в символы», проведем такую параллель. В современной практике получили распространение аналоговые электрические машины, с помощью которых исследователи решают многие важные проблемы. Принцип действия таких устройств состоит в том, что параметры электрических цепей (омического сопротивления, индуктивности, напряжения; и т. д.) подобраны так, что изменение тока или напряжения во времени оказывается подчиненным тем же законам, которые, по предположению, управляют некоторым физическим или технологическим процессом.
Придав параметрам исходные значения, затем предоставляют развиваться электрическим процессами смотрят, что получится в результате. Это — электрическое моделирование неэлектрического (а, скажем, механического или теплового) процесса. В этом случае никто не будет настаивать, чтобы мы истолковывали токи или напряжения содержательным образом на каждом этапе исследования. Запустив машину, исследователь некоторое время имеет дело только с происходящими в ней электрическими явлениями. Если бы он отказался от такой методики и подвергал все промежуточные значения параметров мелочной проверке и сопоставлению с моделируемым процессом, это могло бы принести только вред (он мог навязать машине свои представления об изучаемом явлении, которые могли бы оказаться ошибочными). Гильбертова методика знакового моделирования ничем, в сущности, не отличается от обрисованной нами сейчас методики электрического моделирования. Роль токов и напряжений, измеряемых с помощью приборов, а в конечном счете — с помощью человеческого глаза, смотрящего на шкалу прибора, у Гильберта играют знаки, опознаваемые и различаемые математиком, а в роли условий, определяющих характер электрического процесса в аналоговой машине, выступают аксиомы и правила вывода одних знаковых комбинаций из других, предварительно установленные на основании некоторых разумных соображений и в дальнейшем ни в коем случае не нарушаемые. Впоследствии мы увидим, какую существенную роль играет знаковое моделирование в кибернетике.
Теперь о другой стороне программы Гильберта — о тех его идеях и надеждах, которые не оправдались и оказались иллюзорными.
У Гильберта было глубокое убеждение в том, что можно «финитными» (конечными) средствами доказать непротиворечивость арифметики, после чего и вся математика — с анализом и всеми ее «идеальными элементами» — станет в логическом смысле абсолютно истинной и превратится в инструмент исследования стопроцентной надежности (что не будет, конечно, означать прекращения развития математической науки). Что же такое «финитные средства»? Это — аппарат, не апеллирующий к канторовской идее бесконечности (когда бесконечные множества мыслятся как актуальные, то есть «ставшие», как некие законченные образования, данные сразу всеми своими элементами) и не содержащий «идеальных элементов», схемы и правила рассуждений которого в силу этого вполне ясны, обозримы и понимаются всеми одинаковым образом.
Приведем пример финитного доказательства непротиворечивости, который позволит конкретно представить существо подхода Гильберта. Докажем, что дедуктивно-аксиоматическая система исчисления высказываний, описанная в главе 4 (система Фреге), непротиворечива, то есть, что в ней нельзя доказать в качестве теоремы некоторую формулу а и ее отрицание ~α [18].
Доказательство любой теоремы в данной системе можно представить как цепочку формул, каждая из которых есть либо аксиома, то есть формула, подпадающая под какую-либо схему аксиом, либо получена из каких-либо формул, стоящих в цепочке ранее, по модесу поненсу; последняя формула цепочки есть доказываемая теорема. В силу этого самое первое применение правила вывода должно обязательно относиться к аксиомам. В этом смысле можно сказать, что все доказательства — выводы теорем — начинаются на аксиомах, а затем с помощью правила модус поненс получаются новые формулы (причем каждая из них есть теорема). Но поскольку любая формула, подпадающая под какую-либо схему аксиом (аксиома), как мы установили, тождественно-истинна, а модус поненс этой истинности не «портит», то свойство «быть тождественно-истинной формулой» становится в нашей системе «наследственным» — присущим всем теоремам. Это свойство похоже на некий генетический признак, непременно передающийся от родителей к детям. При таком положении дел можно с полной уверенностью утверждать, что среди даже самых дальних потомков прародителей не встретятся экземпляры, лишенные наследуемого признака.
Читать дальше