Ричард Фейнман - 7. Физика сплошных сред
Здесь есть возможность читать онлайн «Ричард Фейнман - 7. Физика сплошных сред» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:7. Физика сплошных сред
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
7. Физика сплошных сред: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «7. Физика сплошных сред»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
7. Физика сплошных сред — читать онлайн бесплатно полную книгу (весь текст) целиком
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «7. Физика сплошных сред», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
На практике трудно установить, когда основной магнит создает поле точно 5000 гс. Ток в главном магните обычно подбирают, изменяя его постепенно до тех пор, пока на экране не появится резонансный сигнал. Оказывается, на сегодняшний день это наиболее удобный способ точного измерения напряженности магнитного поля, Разумеется, кто-то должен был когда-то точно измерить магнитное поле и частоту и определить величину g для протона. Однако сейчас, после того как это уже сделано, протонную резонансную аппаратуру типа той, что изображена на рисунке, можно использовать как «протонный резонансный магнитометр».
Несколько слов о форме сигнала. Если бы мы очень медленно изменяли магнитное поле, то можно было бы ожидать, что мы увидим нормальную резонансную кривую. Поглощение энергии достигло бы максимума, когда частота генератора была бы в точности равна w p . Небольшое поглощение происходило бы, конечно, и при близлежащих частотах, так как не все протоны находятся в точности в одинаковом поле, а различные поля означают несколько отличные резонансные частоты.
Но так ли все это? Должны ли мы на самом деле видеть при резонансной частоте какой-то сигнал? Не следует ли ожидать, что высокочастотное поле выравнивает населенность обоих состояний, так что, за исключением первого момента, никакого сигнала не будет, когда вода помещается внутрь поля? Не совсем так, поскольку хотя мы и стараемся выровнять обе населенности, тепловое движение со своей стороны старается сохранить равновесные значения, присущие данной температуре Т. Если мы находимся точно в резонансе, то мощность, поглощенная ядрами, в точности равна мощности, теряемой на тепловое движение. Однако «тепловой контакт» между системой протонных магнитных моментов и атомным движением довольно слабый. Каждый протон относительно изолирован в центре электронного облака. Таким образом, чистая вода дает слишком слабый резонансный сигнал, чтобы его можно было заметить. Для увеличения поглощения необходимо улучшить «тепловой контакт». Это обычно делается путем добавления в воду небольшого количества окиси железа. Атомы железа — совсем как маленькие магнитики, и когда они прыгают туда и сюда в своем «тепловом танце», то создают слабенькое прыгающее магнитное поле, которое действует на протоны. Эти изменяющиеся доля «связывают» протонные магнитные моменты с атомными колебаниями и стремятся восстановить тепловое равновесие. Именно из-за этого взаимодействия протоны в состояниях с большой энергией теряют свою энергию и снова становятся способными к поглощению энергии генератора.
На практике же сигнал на выходе ядерной резонансной аппаратуры не похож на обычную резонансную кривую. Обычно это более сложный сигнал с осцилляциями, похожими на те, что изображены на фиг. 35.8. Такая форма сигнала обусловлена изменяющимися полями. Объяснять ее следовало бы с точки зрения квантовой механики, однако можно показать, что объяснение таких экспериментов при помощи представлений классической физики, как мы их использовали выше, тоже дает правильный ответ. С точки зрения классической физики мы бы сказали, что когда мы попадаем в резонанс, то синхронно начинаем раскачивать множество прецессирующих ядерных магнитиков. В результате мы их заставляем прецессировать все вместе. А вращаясь все вместе, эти маленькие магнитики создают в катушке индуцированную э.д.с. с частотой, равной w p. Но поскольку со временем магнитное поле увеличивается, то увеличивается и частота прецессии, поэтому наведенное напряжение вскоре приобретает частоту, большую, чем частота генератора. Так как при этом наведенная э.д.с. попеременно попадает то в фазу, то в противофазу с переменным внешним полем, «поглощенная» мощность становится попеременно то положительной, то отрицательной. Таким образом, на экране мы видим запись биений между частотой протона и частотой генератора. Из-за того что частоты не всех протонов в точности одинаковы (разные протоны находятся в нескольких различных полях), а возможно, и в результате возмущений, вносимых атомами железа, находящимися в воде, свободно прецессирующие моменты скоро выбиваются из фазы и сигналы биений исчезают.
Эти явления магнитного резонанса используются во многих методах как орудие выяснения новых свойств вещества — особенно в химии и в физике. Я не говорю уже о том, что число магнитных моментов ядра говорит нам кое-что и о его структуре. В химии многое можно узнать из структуры (или формы) резонансов. Благодаря магнитным полям, создаваемым близлежащими ядрами, точная частота ядерного резонанса для данного частного атома немного сдвигается; величина этого сдвига зависит от окружения, в котором он находится. Измерение этих сдвигов помогает определить, какой атом находится рядом с каким, и проливает свет на детали структуры молекул. Столь же важен и электронный спиновый резонанс свободных радикалов. Такие радикалы, обычно крайне неустойчивые, часто появляются на промежуточных этапах ряда химических реакций. Измерение электронного спинового резонанса служит очень чувствительным индикатором при обнаружении свободных радикалов и часто дает ключ к пониманию механизма некоторых химических реакций.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «7. Физика сплошных сред»
Представляем Вашему вниманию похожие книги на «7. Физика сплошных сред» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «7. Физика сплошных сред» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.