§ 6. Ядерный магнитный резонанс
Я уже говорил, что атомный парамагнетизм очень слаб и что ядерный магнетизм в тысячу раз слабее его. Но все же с помощью явления, называемого «ядерным магнитным резонансом», наблюдать его относительно легко. Предположим, что мы взяли такое вещество, как вода, у которого все электронные спины в точности компенсируют друг друга, так что их полный магнитный момент равен нулю. У таких молекул все же останется очень-очень слабый магнитный момент благодаря наличию магнитного момента у ядер водорода. Предположим, что мы поместили небольшой образец воды в магнитное поле В. Поскольку спин протонов (входящих в атом водорода) равен 1 / 2 , то у них возможны два энергетических состояния. Если вода находится в тепловом равновесии, то протонов в нижнем энергетическом состоянии, моменты которых направлены параллельно полю, будет немного больше. Поэтому каждая единица объема обладает очень маленьким магнитным моментом. А поскольку протонный момент составляет только одну тысячную долю атомного момента, то намагниченность, которая ведет себя как m 2[см. уравнение (35.22)], будет в миллион раз слабее обычной атомной парамагнитной намагниченности. (Вот почему мы должны выбирать материал, у которого отсутствует атомный парамагнетизм.) После того как мы подставим все величины, окажется, что разность между числом протонов со спином, направленным вверх, и спином, направленным вниз, составляет всего несколько единиц на 10 8, так что эффект и в самом деле очень мал! Однако его можно наблюдать следующим образом.
Предположим, что мы поместили ампулу с водой внутрь небольшой катушки, которая создает слабое горизонтальное осциллирующее магнитное поле. Если это поле осциллирует с частотой w p, то оно вызовет переходы между двумя энергетическими состояниями точно так же, как это было в опытах Раби, которые мы описывали в § 3. Когда протон «сваливается» с верхнего энергетического состояния на нижнее, он отдает энергию m z B, которая, как мы видели, равна hw p . Если же он переходит с нижнего состояния на верхнее, то будет отбирать энергию hw p у катушки. А поскольку в нижнем состоянии имеется немного больше протонов, чем в верхнем, то из катушки будет поглощаться энергия. И хотя эффект весьма мал, с помощью чувствительного электронного усилителя можно наблюдать даже столь малое поглощение энергии.
Как и в эксперименте Раби с молекулярными пучками, поглощение энергии будет заметно только тогда, когда осциллирующее поле находится в резонансе, т. е. когда

Часто удобнее искать резонанс, изменяя В и оставляя постоянной w. Очевидно, что поглощение энергии происходит, когда

Типичная установка, применяемая при изучении ядерного магнитного резонанса, показана на фиг. 35.8.

Фиг. 35.8. Схема аппаратуры для изучения ядерного магнитного резонанса.
Между полюсами большого электромагнита помещена небольшая катушка, питаемая высокочастотным генератором. Вокруг наконечников полюсов магнитов намотаны две вспомогательные катушки, питаемые током с частотой 60 гц, так что магнитное поле немного «колеблется» вокруг своего среднего значения. Для примера скажу вам, что ток главного магнита создает поле в 5000 гс, а вспомогательные катушки изменяют его на ±1 гс. Если генератор настроен на частоту 21,2 Мгц, то протонный резонанс будет происходить всякий раз, когда поле проходит через 5000 гс [используйте соотношение (34.13) для протона с величиной g=5,58].
Схема генератора устроена так, что дает на выход дополнительный сигнал, пропорциональный изменению мощности, поглощенной из генератора, а этот сигнал подается после усиления на вертикально отклоняющие пластины осциллографа. В горизонтальном направлении луч пробегает один раз за каждый период изменения дополнительного вспомогательного поля. (Впрочем, чаще горизонтальная развертка делается пропорциональной частоте вспомогательного поля.)
До того как внутрь высокочастотной катушки мы поместим ампулу с водой, мощность, отдаваемая генератором, имеет какую-то величину. (Она не изменяется с изменением магнитного поля.) Но как только внутрь катушки мы поместим небольшую ампулу с водой, на экране осциллографа появляется сигнал (см. фиг. 35.8). Мы непосредственно видим график мощности, поглощаемой протонами!
Читать дальше