Ричард Фейнман - 4. Кинетика. Теплота. Звук

Здесь есть возможность читать онлайн «Ричард Фейнман - 4. Кинетика. Теплота. Звук» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

4. Кинетика. Теплота. Звук: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «4. Кинетика. Теплота. Звук»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

4. Кинетика. Теплота. Звук — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «4. Кинетика. Теплота. Звук», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

где U G —U L разность отнесенных к молю внутренних энергий газа и жидкости. Термодинамическое уравнение (45.15) и кине­тическое уравнение (45.16) очень похожи, потому что давление равно nkT, но все-таки это разные уравнения. Однако их можно сделать одинаковыми, если заменить старое предположение L=const предположением о том, что L—U G=const. Если предположить, что L— U G не зависящая от температуры постоянная, то соображения, из которых ранее следовало (45.15), при­ведут теперь к уравнению (45.16).

Это сравнение показывает преимущества и недостатки тер­модинамики по сравнению с кинетической теорией. Прежде всего полученное термодинамически уравнение (45.14) — это точное соотношение, а (45.16) — всего-навсего приближение. Ведь нам пришлось предположить, что U приблизительно постоянна и что наша модель верна. Во-вторых, нам, быть мо­жет, никогда не удастся понять до конца, как газ переходит в жидкость, и все-таки уравнение (45.14) правильно, а (45.16)— это только приближение. В-третьих, хотя мы говорили о прев­ращении газа в жидкость, наши аргументы верны для любого перехода из одного состояния в другое. Например, переход твердое тело — жидкость описывается кривыми, очень похо­жими на кривые фиг. 45.3 и 45.4.

Фиг 454 Диаграмма Р V для цикла Карно с конденсирующимся в цилиндре паром - фото 116

Фиг. 45.4. Диаграмма Р — V для цикла Карно с конденсирующимся в цилиндре паром.

Слева — все вещество переходит в жидкость. Чтобы полностью испарить ее при температуре Т, нужно добавить тепла L. При падении температуры от Т до Т—DT пар расширяется адиаба­тически.

Вводя скрытую теплоту плав­ления М/моль, мы получим формулу, аналогичную уравне­нию (45.14): (дP пл /дT) V =M/[T(V L -V S )]. Мы можем не знать ничего о кинетической теории процесса плавления, а все же получить правильное уравнение. Однако если мы узнаем кинетическую теорию, то сразу же получим большое пре­имущество. Уравнение (45.14) — это всего лишь дифферен­циальное уравнение, и мы еще совершенно не умеем находить постоянные интегрирования. В кинетической теории можно вычислить и эти постоянные, надо только придумать хорошую модель, описывающую все явление полностью. Итак, в каждой теории есть и хорошее, и плохое. Если познания наши слабы, а картина сложна, то термодинамические соотношения ока­зываются самым мощным средством. Когда же картина упро­щается настолько, что можно ее проанализировать теоретиче­ски, то лучше сначала попробовать выжать из этого анализа как можно больше.

Еще один пример: излучение черного тела. Мы уже гово­рили об ящике, содержащем излучение и ничего больше, и уже толковали о равновесии между излучением и осциллятором.

Мы выяснили также что когда фотоны ударяются о стенки ящика они создают - фото 117

Мы выяснили также, что когда фотоны ударяются о стенки ящи­ка, они создают давление Р. Мы вывели формулу PV=U/3, где U — полная энергия фотонов, а V — объем ящика. Если под­ставить U=3РV в основное уравнение (45.7),то обнаружится, что

Поскольку объем ящика не изменяется, можно заменить (дP/дT) V на dP/dT и получить обыкновенное дифференциальное уравне­ние. Оно легко интегрируется и дает lnP = 4lnT +const, или Р= const·T 4. Давление излучения изменяется как четвертая степень температуры, поэтому заключенная в излучении энер­гия U/V=P/3 тоже меняется как T 4. Обычно пишут так: U/V=(4s/с)T 4, где с — скорость света, а s— другая посто­янная. Термодинамика сама по себе ничего не скажет нам об этой постоянной. Это хороший пример и ее могущества, и ее бес­силия. Знать, что U/V изменяется как T 4, — это уже большое дело, но узнать, чему именно равно U/V при той или иной тем­пературе, можно, только разобравшись в деталях полной тео­рии. У нас есть теория излучения черного тела и сейчас мы вы­числим а.

Пусть I (w)dw — распределение интенсивности, иначе говоря, поток энергии через 1 м 2 за 1 сек в интервале частот между w и w+dw:

Распределение плотности энергии = 4 Кинетика Теплота Звук - изображение 118

поэтому

U/V=Полная плотность энергии,

4 Кинетика Теплота Звук - изображение 119

4 Кинетика Теплота Звук - изображение 120(Плотность энергии между w и w+dw),

Мы уже успели узнать, что

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «4. Кинетика. Теплота. Звук»

Представляем Вашему вниманию похожие книги на «4. Кинетика. Теплота. Звук» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «4. Кинетика. Теплота. Звук»

Обсуждение, отзывы о книге «4. Кинетика. Теплота. Звук» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x