Ричард Фейнман - 4. Кинетика. Теплота. Звук

Здесь есть возможность читать онлайн «Ричард Фейнман - 4. Кинетика. Теплота. Звук» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

4. Кинетика. Теплота. Звук: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «4. Кинетика. Теплота. Звук»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

4. Кинетика. Теплота. Звук — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «4. Кинетика. Теплота. Звук», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг 4411 Изменение энтропии за полный обратимый цикл Полное изменение - фото 99

Фиг. 44.11. Изменение энтропии за полный об­ратимый цикл. Полное изменение энтропии равно нулю.

Вспомним еще, что по мере продвижения вдоль этого пути энтропия (тепло, выделяемое при единичной температуре) возрастает в согласии с правилом dS=dQ/T, где dQ — тепло, изъятое из вещества при темпе­ратуре Т.

Мы уже знаем, что после обратимого цикла полная энтропия всего, что включается в процесс, не изменяется. Ведь тепло Q 1, поглощенное при T 1, и тепло Q 2 , выделенное при Т 2 , вносят в энтропию равные по величине, но противоположные по знаку вклады. Поэтому чистое изменение энтропии равно нулю. Таким образом, при обратимом цикле энтропия всех участников цикла, включая резервуары, не изменяется. Это правило как будто похоже на закон сохранения энергии, но это не так. Оно применимо только к обратимым циклам. Если перейти к необ­ратимым циклам, то закона сохранения энтропии уже не суще­ствует.

Приведем два примера. Для начала предположим, что какая-то машина с трением производит необратимую работу, выделяя тепло Q при температуре Т. Энтропия возрастет на Q/Т. Тепло Q равно затраченной работе, и когда мы производим какую-то работу с помощью трения о какой-то предмет, температура ко­торого равна Т, то энтропия возрастает на величину W/Т.

Другой пример необратимости: если приложить друг к другу два предмета с разными температурами, скажем Т 1 и Т 2 , то от одного предмета к другому перетечет некоторое количество тепла. Предположим, например, что мы бросили в холодную воду горячий камень. Насколько изменяется энтропия камня, если он отдает воде тепло D Q при температуре T 1 ?Она умень­шается на A DQ/T 1. А как изменяется энтропия воды? Она возра­стет на D Q/T 2 . Тепло, конечно, может перетечь только от более высокой температуры Т 1 к более низкой Т 2 . Поэтому если T 1больше Т 2 , то DQ положительно. Таким образом, изменение энтропии положительно и равно разности двух дробей:

DS=DQ/T 2-DQ/T 1 . (44.19)

Итак, справедлива следующая теорема: в любом необратимом процессе энтропия всего на свете возрастает. Только обратимые процессы могут удержать энтропию на одном уровне. А по­скольку абсолютно необратимых процессов не существует, то энтропия всегда понемногу растет. Обратимые процессы — это идеализированные процессы с минимальным приростом энтропии.

К сожалению, нам не придется углубиться в область термо­динамики. Наша цель лишь проиллюстрировать основные идеи этой науки и объяснить причины, по которым возможно осно­вываться на этих аргументах. Но в нашем курсе мы не будем часто прибегать к термодинамике. Термодинамикой широко пользуются в технике и в химии. Поэтому с термодинамикой вы практически познакомитесь в курсе химии или технических наук. Ну а дублировать нет смысла, и мы ограничимся лишь не­которым обзором природы теории и не будем вдаваться в детали для специальных ее применений.

Два закона термодинамики часто формулируют так:

Первый закон: Энергия Вселенной всегда постоянна. Второй закон: Энтропия Вселенной всегда возрастает.

Это не слишком хорошая формулировка второго закона. В ней ничего не говорится, например, о том, что энтропия не из­меняется после обратимого цикла и не уточняется само понятие энтропии. Просто это легко запоминаемая форма обоих законов, но из нее нелегко понять, о чем собственно идет речь.

Все законы, о которых сейчас шла речь, мы собрали в табл. 44.1. А в следующей главе мы используем эту сводку за­конов, чтобы найти соотношение между теплом, выделяемым резиной при растяжении, и дополнительным натяжением рези­ны при ее нагревании.

Таблица 44. 1 · ЗАКОНЫ ТЕРМОДИНАМИКИ

Раньше мы определяли температурную шкалу иначе Мы утверждали что средняя - фото 100

* Раньше мы определяли температурную шкалу иначе. Мы утверждали, что средняя кинетическая энергия молекулы идеального газа пропорциональна температуре или, согласно закону идеального газа, что pV пропорционально Т. Эквивалентно ли это новому определению? Да. Ведь окончательный результат (44.7), выведенный из закона идеаль­ного газа, совпадает с приведенным здесь результатом. Мы еще поговорим об этом в следующей главе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «4. Кинетика. Теплота. Звук»

Представляем Вашему вниманию похожие книги на «4. Кинетика. Теплота. Звук» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «4. Кинетика. Теплота. Звук»

Обсуждение, отзывы о книге «4. Кинетика. Теплота. Звук» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x