Ричард Фейнман - 4. Кинетика. Теплота. Звук
Здесь есть возможность читать онлайн «Ричард Фейнман - 4. Кинетика. Теплота. Звук» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:4. Кинетика. Теплота. Звук
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
4. Кинетика. Теплота. Звук: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «4. Кинетика. Теплота. Звук»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
4. Кинетика. Теплота. Звук — читать онлайн бесплатно полную книгу (весь текст) целиком
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «4. Кинетика. Теплота. Звук», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
Фиг. 44.9. Абсолютная термодинамическая температура.
Если машина забирает из котла в семь раз больше тепла, нежели поступает в одноградусный конденсор, то температура котла равна семи градусам и т. д. Таким образом, измеряя количество тепла, поглощаемого при разных температурах, мы определяем температуру. Полученная таким образом температура называется абсолютной термодинамической температурой и не зависит от свойств вещества. Теперь мы будем пользоваться исключительно этим определением температуры.
Теперь нам ясно, что если у нас имеются две машины, из коих одна работает при перепаде температур Т 1 и один градус, а другая — T 2и один градус, и обе они выделяют при единичной температуре одинаковое количество тепла, то поглощаемое ими тепло должно удовлетворять соотношению
Q 1/T 1=S=Q 2/T 2. (44.12)
Но это означает, что если какая-нибудь обратимая машина поглощает тепло q 1 при температуре Т 1 , а выделяет тепло Q 2при температуре Т 2 , то отношение Q 1 к T 1равно отношению Q 2 к T 2 . Это справедливо для любой обратимой машины. Все, что будет дальше, содержится в этом соотношении: это центр термодинамической науки.
Но если это все, что есть в термодинамике, то почему же ее считают такой трудной наукой? А попробуйте описать поведение какого-нибудь вещества, если вам даже заранее известно, что масса вещества все время постоянна. В этом случае состояние вещества в любой момент времени определяется его температурой и объемом. Если известны температура и объем вещества, а также зависимость давления от объема и температуры, то можно узнать и внутреннюю энергию. Но кто-нибудь скажет: «А я хочу поступить иначе. Дайте мне температуру и давление и я скажу вам, каков объем. Я могу считать объем функцией температуры и давления и искать зависимость внутренней энергии именно от этих переменных». Трудности термодинамики связаны именно с тем, что каждый может подойти к задаче с того конца, с какого вздумает. Нужно только сесть и выбрать определенные переменные, а потом уж твердо стоять на своем, и все станет легко и просто.
Сейчас приступим к выводам. В механике мы подошли ко всем нужным нам результатам, исходя из центра механического мира F=m a. Такую же роль в термодинамике сыграет только что найденный нами принцип. Но какие выводы можно сделать, исходя из этого принципа?
Ну начнем. Сначала скомбинируем закон сохранения энергии и закон, связывающий Q 1 и Q 2 , чтобы найти коэффициент полезного действия обратимой машины. Первый закон говорит, что W=Q 1 -Q 2 . Согласно нашему новому принципу,
Q 2=(T 2/T 1)Q 1. Поэтому работа равна
W=Q 1(l-T 2/T 1) =Q 1(T 1-T 2)/T 1. (44.13)
Это соотношение характеризует эффективность машины, т. е. количество работы, произведенное при заданной затрате тепла. Коэффициент полезного действия пропорционален перепаду температур, при котором работает машина, деленному на более высокую температуру:
К.п.д. =W/Q 1=(T 1-T 2)/T 1. (44.14)
Коэффициент полезного действия не может быть больше единицы, а абсолютная температура не может быть меньше нуля, абсолютного нуля. Таким образом, раз t 2 должна быть положительной, то коэффициент полезного действия всегда меньше единицы. Это наш первый вывод.
§ 6. Энтропия
Уравнение (44.7) или (44.12) может быть истолковано особо. При работе обратимых машин Q 1 /T 1 =Q 2 /T 2 , и тепло Q 1 при температуре Т 1 «эквивалентно» теплу Q 2 при температуре T 2; ведь если поглощается Q 1 то всегда выделяется тепло Q 2 . Если теперь придумать для Q/T особое название, то можно сказать, что при обратимых процессах поглощается столько же Q/T, сколько и выделяется. Иначе говоря, Q/T не убывает и не прибывает. Эта величина Q/T называется энтропией, и мы говорим, что «за обратимый цикл изменение энтропии равно нулю». Если T=1°, то энтропия равна Q/1°; мы уже снабдили энтропию особым символом S=Q S /1°. Энтропия повсюду обозначается буквой S, а численно она равна теплу (которое мы обозначили буквой Q S ), выделяемому в одноградусном резервуаре (энтропия не равна просто теплу, это тепло, деленное на температуру, и измеряется она в джоулях на градус).
Интересно, что, кроме давления, которое зависит от температуры и объема, и внутренней энергии (функции все тех же объема и температуры), мы нашли еще величину — энтропию вещества, которая тоже является функцией состояния. Постараемся объяснить, как вычислять энтропию и что мы понимаем под словами «функция состояния». Проследим за поведением системы в разных условиях. Мы уже умеем создавать разные условия экспериментально, например можно заставить систему расширяться адиабатически или изотермически. (Между прочим, машина не обязательно должна иметь только два резервуара, может быть и три, и четыре различные температуры, и машина будет обмениваться теплом с каждым из резервуаров.) Мы можем прогуляться по всей диаграмме pV, переходя от одного состояния к другому. Иначе говоря, можно перевести газ из состояния а в какое-нибудь другое состояние b и потребовать, чтобы переход из а в b был обратимым. Теперь предположим, что вдоль пути из а в b поставлены маленькие резервуары с разными температурами. Тогда каждый короткий шажок будет сопровождаться изъятием из вещества тепла dQ и передачей его в резервуар при температуре, соответствующей данной точке пути. Давайте свяжем все эти резервуары с помощью обратимых тепловых машин с одним резервуаром единичной температуры. После того как мы закончим перевод вещества из состояния а в состояние b, мы вернем все резервуары в их первоначальное состояние. Обратимая машина вернет каждую дольку тепла dQ, изъятого из вещества при температуре Т, и каждый раз при единичной температуре будет выделяться энтропия dS, равная
Читать дальшеИнтервал:
Закладка:
Похожие книги на «4. Кинетика. Теплота. Звук»
Представляем Вашему вниманию похожие книги на «4. Кинетика. Теплота. Звук» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «4. Кинетика. Теплота. Звук» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.