Ричард Фейнман - 2. Пространство. Время. Движение

Здесь есть возможность читать онлайн «Ричард Фейнман - 2. Пространство. Время. Движение» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

2. Пространство. Время. Движение: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «2. Пространство. Время. Движение»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

2. Пространство. Время. Движение — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «2. Пространство. Время. Движение», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Например, если нам нужно найти центр масс прямоуголь­ного треугольника с основанием D и высотой H (фиг. 19.2), то это делается следующим образом.

Фиг 192 Прямоугольный треугольник и прямой круговой конус образованный - фото 82

Фиг. 19.2. Прямоугольный тре­угольник и прямой круговой конус, образованный вращением этого треугольника.

Вообразите себе ось, про­ходящую вдоль H, и поверните треугольник на 360° вокруг этой оси. Это дает нам конус. Расстояние, которое проходит x-координата центра масс, равно 2 p х, а площадь области, кото­рая двигалась, т. е. площадь треугольника, равна 1 / 2 HD. Произведение расстояния, пройденного центром масс, на пло­щадь треугольника равно объему конуса, т. е. 1 / 3 p D 2 H. Таким образом, (2 p х)( 1 / 2 HD)= 1 / 3 p D 2 H, или x=D/3. Совершенно аналогично вращением вокруг второго катета или просто по соображениям симметрии находим, что у=Н/3. Вообще центр масс любого однородного треугольника находится в точке пере­сечения трех его медиан (линий, соединяющих вершину тре­угольника с серединой противоположной стороны), которая от­стоит от основания на расстоянии, равном 1/ 3длины каждой медианы.

Как это увидеть? Рассеките треугольник линиями, парал­лельными основанию, на множество полосок. Заметьте теперь, что медиана делит каждую полоску пополам, следовательно, центр масс должен лежать на медиане.

Возьмем теперь более сложную фигуру. Предположим, что требуется найти положение центра масс однородного полукруга, т. е. круга, разрезанного пополам. Где будет находиться центр масс в этом случае? Для полного круга центр масс расположен в геометрическом центре, но для полукруга найти его положе­ние труднее. Пусть r радиус круга, а x — расстояние центра масс от прямолинейной границы полукруга. Вращая его вокруг этого края как вокруг оси, мы получаем шар. При этом центр масс проходит расстояние 2 p х, а площадь полукруга равна 1/ 2pr 2(половине площади круга). Так как объем шара равен, конечно, 4pr 3/3, то отсюда находим

2 Пространство Время Движение - изображение 83

2 Пространство Время Движение - изображение 84

или

Существует еще другая теорема Паппа, которая фактически является частным случаем сформулированной выше теоремы, а потому тоже справедлива. Предположим, что вместо твердого полукруга мы взяли полуокружность, например кусок прово­локи в виде полуокружности с однородной плотностью, и хотим найти ее центр масс. Оказывается, что площадь, которая «заме­тается» плоской кривой при ее движении, аналогичном выше­описанному, равна расстоянию, пройденному центром масс, умноженному на длину этой кривой. (Кривую можно рассмат­ривать как очень узкую полоску и применять к ней предыдущую теорему.)

§ 3. Вычисление момента инерции

Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инер­ции объекта относительно оси z имеет вид

Иными словами нужно сложить все массы умножив каждую из них на квадрат ее - фото 85

Иными словами, нужно сложить все массы, умножив каждую из них на квадрат ее расстояния до оси (z 2 i+y 2 i). Заметьте, что это верно даже для трехмерного тела, несмотря на то, что рас­стояние имеет такой «двумерный вид». Впрочем, в большинстве случаев мы будем ограничиваться двумерными телами.

В качестве простого примера рассмотрим стержень вращающийся относительно оси - фото 86

В качестве простого примера рассмотрим стержень, вра­щающийся относительно оси, проходящей через его конец и перпендикулярной к нему (фиг. 19.3).

Фиг. 19.3. Прямой стержень, вращающийся вокруг оси, прохо­дящей через один из его концов.

Нам нужно просуммировать теперь все массы умноженные на квадраты расстояния х - фото 87

Нам нужно просуммиро­вать теперь все массы, умноженные на квадраты расстояния х (в этом случав все у — нулевые). Под суммой, разумеется, я имею в виду интеграл от x 2 , умноженный на «элементики» мас­сы. Если мы разделим стержень на кусочки длиной dx, то соот­ветствующий элемент массы будет пропорционален dx, а если бы dx составляло длину всего стержня, то его масса была бы равна М. Поэтому

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «2. Пространство. Время. Движение»

Представляем Вашему вниманию похожие книги на «2. Пространство. Время. Движение» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «2. Пространство. Время. Движение»

Обсуждение, отзывы о книге «2. Пространство. Время. Движение» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x