Ричард Фейнман - 2. Пространство. Время. Движение

Здесь есть возможность читать онлайн «Ричард Фейнман - 2. Пространство. Время. Движение» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

2. Пространство. Время. Движение: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «2. Пространство. Время. Движение»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

2. Пространство. Время. Движение — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «2. Пространство. Время. Движение», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Размерность момента инерции всегда равна массе, умноженной на квадрат длины, так что единственная существенная величина, которую мы вычислили, это множитель 1/ 3.

А чему будет равен момент инерции I, если ось вращения проходит через середину стержня? Чтобы найти его, нам снова нужно взять интеграл, но уже в пределах от - 1/ 2L до + 1/ 2 L. Заметим, однако, одну особенность этого случая. Такой стер­жень с проходящей через центр осью можно представлять себе как два стержня с осью, проходящей через конец, причем масса каждого из них равна М/2, а длина равна L/2. Моменты инер­ции двух таких стержней равны друг другу и вычисляются по формуле (19.5). Поэтому момент инерции всего стержня равен

Таким образом стержень гораздо легче крутить за середину чем за конец Можно - фото 88

Таким образом, стержень гораздо легче крутить за середину, чем за конец.

Можно, конечно, продолжить вычисление моментов инер­ции других интересующих нас тел. Но поскольку такие расчеты требуют большого опыта в вычислении интегралов (что очень важно само по себе), они как таковые не представляют для нас большого интереса. Впрочем, здесь имеются некоторые очень интересные и полезные теоремы. Пусть имеется какое-то тело и мы хотим узнать его момент инерции относительно какой-то оси. Это означает, что мы хотим найти его инертность при вра­щении вокруг этой оси. Если мы будем двигать тело за стер­жень, подпирающий его центр масс так, чтобы оно не повора­чивалось при вращении вокруг оси (в этом случае на него не действуют никакие моменты сил инерции, поэтому тело не будет поворачиваться, когда мы начнем двигать его), то для того, чтобы повернуть его, понадобится точно такая же сила, как если бы вся масса была сосредоточена в центре масс и

момент инерции был бы просто равен I 1 =MR 2 ц.м. , где R ц. м .— расстояние от центра масс до оси вращения. Однако формула эта, разумеется, неверна. Она не дает правильного момента инер­ции тела. Ведь в действительности при повороте тело вращается. Крутится не только центр масс (что давало бы величину I 1), само тело тоже должно поворачиваться относительно центра масс. Таким образом, к моменту инерции I 1нужно добавить I ц— момент инерции относительно центра масс. Правильный ответ состоит в том, что момент инерции относительно любой оси равен

I=I ц +МR 2 ц.м. (19-7)

Эта теорема называется теоремой о параллельном переносе оси. Доказывается она очень легко. Момент инерции относительно любой оси равен сумме масс, умноженных на сумму квад­ратов х и у, т. е. I=Sm i(x 2 i+ y 2 i ). Мы сейчас сосредоточим наше внимание на х, однако все в точности можно повторить и для у. Пусть координата х есть расстояние данной частной точки от начала координат; посмотрим, однако, как все изменится, если мы будем измерять расстояние х' от центра масс вместо х от начала координат. Чтобы это выяснить, мы должны написать

x i =x' i +X ц . м . .

Возводя это выражение в квадрат, находим

x 2 i=x' 2 i+2X ц. мх' i+Х 2 ц . м ..

Что получится, если умножить его на m i и просуммировать по всем i? Вынося постоянные величины за знак суммирования, находим

I x=S m i x i + 2X ц. м.Sm ix i+X 2 ц. м.Sm i .

Третью сумму подсчитать легко; это просто МХ 2 ц..м.. Второй член состоит из двух сомножителей, один из которых Sm ix i ; он равен x'-координате центра масс. Но это должно быть равно нулю, ведь х' отсчитывается от центра масс, а в этой системе координат среднее положение всех частиц, взвешенное их мас­сами, равно нулю. Первый же член, очевидно, представляет собой часть х от I ц. Таким образом, мы и приходим к фор­муле (19.7).

Давайте проверим формулу (19.7) на одном примере. Прос­то проверим, будет ли она применима для стержня. Мы уже нашли, что момент инерции стержня относительно его конца должен быть равен ML 2 /3. А центр масс стержня, разумеется, находится на расстоянии L/2. Таким образом, мы должны полу­чить, что МL 2 /3=МL 2 /12+М(L/2) 2 . Так как одна четвертая + одна двенадцатая = одной третьей, то мы не сделали ника­кой грубой ошибки.

Кстати, чтобы найти момент инерции (19.5), вовсе не обя­зательно вычислять интеграл. Можно просто предположить, что он равен величине ML 2 , умноженной на некоторый неизвестный коэффициент g. После этого можно использовать рассуждения о двух половинках и для момента инерции (19.6) получить коэф­фициент 1/ 4g. Используя теперь теорему о параллельном переносе оси, докажем, что g= 1/ 4g+ 1/ 4, откуда g= 1/ 3. Всегда можно найти какой-нибудь окольный путь!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «2. Пространство. Время. Движение»

Представляем Вашему вниманию похожие книги на «2. Пространство. Время. Движение» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «2. Пространство. Время. Движение»

Обсуждение, отзывы о книге «2. Пространство. Время. Движение» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x