Особо подчеркнем, что системы отсчета «поезд» и «полотно дороги» в разобранном примере находились в существенно неравноправных условиях. Одни часы в поезде сравнивались с двумя часами на платформе.
Если опыт видоизменить — вообразить очень длинный поезд, увешанный синхронными часами [75] , и платформу с одними часами, — то окажется: при сравнении показаний перронных часов с показаниями «поездных» мы убедимся, что отстают часы перронные.
Поэтому нехорошо, очевидно, говорить: время в движущейся системе отсчета течет медленнее.
Такое утверждение противоречит принципу относительности. Все инерциальные системы отсчета совершенно равноправны, и, конечно, нельзя думать, что в одной системе время течет быстрее, чем в другой.
Когда говорят о лоренцовом сокращении времени, всегда имеют в виду только то утверждение, что было приведено выше [76] .
Полную равноправность понятия времени в разных инерциальных системах хорошо поясняет одна иллюстрация.
Представьте две ракеты с радиостанциями на борту. Пусть летчики снабжены физически идентичными часами. Пусть ракеты разлетаются с постоянной относительной скоростью v и каждую секунду по своим часам радиостанция каждой ракеты посылает радиосигналы.
Наблюдатель на ракете № 2, измеряя по своим часам интервалы между моментами приема радиосигналов, посланных ракетой № 1, обнаружит, что они несколько больше одной секунды. А именно:
каждый.
Это растягивание времени между двумя последовательными приемами сигналов определяется эффектом Допплера [77] .
Если теперь наблюдатель в ракете № 2 произведет несложный расчет, он заключит, что по его часам n -й сигнал был отправлен в момент времени
секунд.
(Расчет воспроизводить не будем и поверим, что здесь нет ошибки.)
Но поскольку по часам ракеты № 1 n -й сигнал был послан в момент t n N = n секунд, наблюдатель в ракете № 2 заявит, что часы ракеты № 1 отстают.
Действительно, между отправлением первого и n -го сигналов с ракеты № 1 по часам ракеты № 2 прошло
секунд, а по часам ракеты № 1 меньше, всего n секунд.
Но ведь вся задача сформулирована совершенно симметрично, и ракета № 1 ничем не лучше ракеты № 2. Поэтому ясно, что в нашем рассуждении можно спокойно переменить номера ракет. И с теми же основаниями наблюдатель в ракете № 1 будет утверждать, что отстают часы ракеты № 2.
Кто же прав?
Оба.
Чтобы это несколько необычное утверждение стало понятнее, надо только уточнить, что подразумевает наблюдатель ракеты № 1, определяя время отправления n-го сигнала с ракеты № 2 по своим часам .
Это время по самому своему смыслу есть не что иное, как показания часов, синхронных с часами ракеты № 1 и находящихся в той точке , где в момент отправления n -го сигнала была ракета № 2.
По сравнению с показаниями этих часов часы ракеты № 2 будут показывать меньшее время — отставать. Точно так же, утверждая, что отстают часы ракеты № 1, наблюдатель в ракете № 2 мысленно «вешает» часы, синхронные со своими, в точку, где находится ракета № 1.
Мы снова приходим к старому выводу. Отстают те часы, которые сравниваются с показаниями нескольких синхронных между собой часов другой инерциальной системы.
В таком виде это заявление выглядит несколько формально, но по смыслу оно совпадает с основным утверждением об измерении промежутка времени между двумя событиями. Интервал времени минимален в той системе отсчета, где события произошли в одной точке [78] .
Самый «главный» парадокс теории относительности — парадокс с часами.
Однако, честно признаемся, изменение ритма часов воспринимается тяжелее, чем лоренцово сокращение длины. Это вызвано, вероятно, отчасти тем, что вообще труднее воспринять понятие времени, а отчасти «необратимостью» эффекта. Что именно подразумевается под «необратимостью», лучше всего пояснить, вспомнив о длине.
Читать дальше