Может быть, разобраться в характере взаимодействия между теорией относительности и квантовой физикой или глубинным смыслом измерения удастся еще очень нескоро, но эти вопросы, безусловно, заслуживают дальнейших усилий в этом направлении. Думаю, для успеха здесь вряд ли потребуется сложная математика или заумная философия. Тот, кому удастся совершить прорыв в этой области, сделает это, скорее всего, с помощью нескольких очень простых примеров; не исключено, что ему для этого понадобится всего лишь алгебра – и, возможно, какие-то ссылки на часовую стрелку часов и то, куда она указывает. Может быть, это произойдет, когда какой-то простой эксперимент даст неожиданный результат. Я прогнозирую, что следующий прорыв будет как возвращение в детство; просто кто-то сумеет взглянуть на реальность по-новому и заметить в физике то, что мы, сами того не понимая, всегда считали истиной; после этого он перевернет это нечто с ног на голову. Кто станет новым Эйнштейном? Может быть, вы?
Приложение 1
Математика относительности
Это приложение предназначено для тех, кто хотел бы видеть и понимать алгебру и конкретные расчеты, стоящие за теми результатами, которые мы обсуждали в тексте.
В специальной теории относительности каждому событию соответствуют положение в пространстве x и время t . Чтобы не усложнять ситуацию, давайте считать остальные пространственные координаты – y и z – равными нулю. Обозначим координаты и время событий во второй системе координат, движущейся относительно первой со скоростью v , заглавными буквами X и T . Эйнштейн определил, что верные отношения x, t, X и T задаются преобразованиями Лоренца:
X = γ( x − vt )
T = γ( t − xv / c ²),
где c – скорость света, а коэффициент замедления времени гамма представлен греческой буквой γ и задается как γ = 1/√(1 − β²), где греческая буква β (бета) представляет отношение скорости объекта к скорости света (β = v / c ). По умолчанию в этих уравнениях считается, что особое событие (0, 0) в обеих системах отсчета имеет одинаковые координаты.
Хендрик Лоренц был первым, кто записал эти уравнения и показал, что Максвелловы уравнения электромагнетизма им удовлетворяют. Но только Эйнштейн сумел понять, что они представляют реальные изменения в поведении пространства и времени, а затем и применить их для вывода новых уравнений физики. Уравнения Максвелла при этом изменять не потребовалось, а вот уравнения Ньютона пришлось менять, и Эйнштейн заключил, помимо всего прочего, что масса движущихся объектов увеличивается (я говорю здесь о релятивистской массе, рассчитываемой как γ m ) и что E = mc ².
У преобразования Лоренца есть замечательное свойство: при решении его уравнений относительно x и t получаются уравнения одинакового вида, за исключением знака при скорости. (При решении используется довольно хитрая алгебра, и придется использовать приведенное выше определение γ, но попытайтесь.) Вот результат:
x = γ( X + vT );
t = γ( T + X v / c ²).
В сравнении с предыдущими уравнениями изменение знака (с − на +) – это именно то, чего и следовало ожидать, поскольку по отношению ко второй СО первая система движется со скоростью − v . Тем не менее кажется поразительным, что уравнение имеет тот же вид. Я бы ни за что не догадался, что так получится. Этот факт – часть чуда теории относительности, согласно которой все инерциальные системы отсчета равно годятся для записи уравнений физики.
А теперь рассмотрим растяжение времени. Мы будем пользоваться той же терминологией, что и в примере с парадоксом близнецов, о котором шла речь в главе 4. Напомню, что Мэри там отправляется к далекой звезде, тогда как Джон остается дома. Назовем первую систему отсчета системой Джона, а вторую, которая движется относительно первой со скоростью v , системой Мэри. (Это их собственные системы отсчета.) Рассмотрим два события: 1-й и 2-й дни рождения Мэри. Обозначим их время и место в системе Джона как x 1, t 1и x 2, t 2. Место и время этих же событий в системе Мэри обозначим как X 1, T 1и X 2, T 2.
А теперь подставим эти величины в уравнения Лоренца. Воспользуемся второй системой:
t 2= γ( T 2+ X 2 v / c ²);
t 1= γ( T 1+ X 1 v / c ²).
Читать дальше
Конец ознакомительного отрывка
Купить книгу