Стивен Вайнберг - Пояснюючи світ

Здесь есть возможность читать онлайн «Стивен Вайнберг - Пояснюючи світ» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2019, Издательство: ООО «ЛитРес», www.litres.ru, Жанр: Физика, Прочая научная литература, sci_popular, на украинском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Пояснюючи світ: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Пояснюючи світ»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Є багато різних наук, і кожна з них пройшла тривалий етап становлення. Та чи замислювалися ви колись над тим, як розвивалася та трансформувалася… сама наука? Якою була її історія? Який сенс вкладали в поняття «наука» у період Античності, Середньовіччя, під час наукової революції XVI–XVII століть? Що змінилося, а що залишилося незмінним? Захоплива мандрівка – від перших експериментів давніх греків до теорії струн та гравітації. Історія фундаментальної науки, що пояснить не лише те, як ми прийшли до розуміння різноманітних речей про світ, а й те, як ми навчилися його пізнавати.

Пояснюючи світ — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Пояснюючи світ», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

a = F/m .

На тіло, що падає в повітрі, діють дві основні сили. Однією є сила тяжіння, пропорційна масі цього тіла:

F тяж = mg.

Тут g – стала, незалежна від природи тіла, що падає. Вона дорівнює прискоренню тіла, що падає, зазнаючи впливу лише сили тяжіння, і має значення 9,8 м/с2 на земній поверхні та поблизу неї. Іншою силою є опір повітря. Це величина, виражена функцією f ( υ ), значення якої пропорційне густині повітря, що зростає зі швидкістю й залежить від форми та розміру тіла, але не залежить від його маси:

F пов = − f(υ ).

Ми ставимо знак мінус для сили опору повітря в цій формулі, бо маємо на увазі прискорення, спрямоване вертикально вниз, а для тіла, що падає, сила опору повітря діє вгору, тому з цим знаком мінус у формулі f(υ ) вона додатна. Наприклад, для тіла, що падає в достатньо в’язкій рідині, її опір пропорційний швидкості тіла:

f(υ ) = kυ,

де k – додатна стала, що залежить від розміру та форми тіла. Для метеора або ракети, що входить до розрідженого повітря верхніх шарів атмосфери, ми маємо натомість таке:

f(υ ) = 2,

де K – інша додатна стала.

Використовуючи формули для цих сил у повній силі F = F тяж + F пов та застосувавши цей результат у законі Ньютона, ми отримуємо:

a = gf(υ )/ m.

Коли якесь тіло тільки-но впустили, його швидкість близька до нуля, тому опору повітря немає і його прискорення донизу дорівнює просто g . З часом його швидкість зростає, і опір повітря починає знижувати його прискорення. Рано чи пізно швидкість падіння тіла наближається до значення, де член − f(υ )/ m просто скорочує член g формули прискорення, і прискорення стає незначним. Це є граничною швидкістю, визначеною розв’язком рівняння:

f(υ гран) = gm.

Арістотель ніколи не говорив про граничну швидкість, але швидкість, задана цією формулою, має деякі з тих самих властивостей, які він приписував швидкості тіл, що падають. Оскільки f(υ ) – висхідна функція υ , гранична швидкість зростає з масою m . В особливому випадку, де f(υ ) = , гранична швидкість прямо пропорційна масі й обернено пропорційна опору повітря:

υ гран = gm/k.

Це не загальні властивості швидкості тіл, що падають, бо важкі тіла досягають граничної швидкості, коли падають уже впродовж тривалого часу.

7. Краплі, що падають

У ході спостережень Стратон виявив, що відстань між краплями, які падають, зростає в міру їхнього падіння, і зробив із цього висновок, що ці краплі прискорюються донизу. Якщо одна крапля впала далі за іншу, тоді вона падала довше, а якщо краплі віддаляються, тоді та, що падає довше, має також падати швидше, вказуючи на те, що її падіння прискорюється. Хоч Стратон цього й не знав, прискорення постійне, і, як ми побачимо нижче, результатом цього є відстань між краплями, пропорційна витраченому часу.

Як ми згадували в технічній примітці 6, якщо опором повітря можна знехтувати, тоді спрямоване донизу прискорення будь-якого тіла, що падає, дорівнює сталій g , яка поблизу земної поверхні має значення 9,8 м/с2. Якщо якесь тіло падає зі стану спокою, тоді після часового проміжку τ (тау) швидкість його руху донизу дорівнюватиме g τ. Отже, якщо перша та друга краплі падають зі стану спокою з тієї самої ринви за час t 1 та t 2, то в якийсь пізніший момент часу t швидкість руху донизу цих крапель дорівнюватиме υ 1 = g ( tt 1) та υ 2 = g ( tt 2) відповідно. Різниця у швидкостях цих крапель, отже, становитиме:

υ 1 − υ 2 = g ( tt 1) − g ( tt 2) = g ( t 2 − t 1).

Хоча значення υ 1 і υ 2 збільшуються з часом, різниця між ними не залежить від конкретного часу t , тому відстань s між краплями просто зростає пропорційно часу:

s = ( υ 1 − υ 2) t = gt ( t 1 − t 2).

Наприклад, якщо друга краплина залишає ринву через якусь десяту частку секунди після першої краплини, то через півсекунди ці краплини віддаляться на 9,8 × 1/2 × 1/10 = 0,49 м.

8. Відбиття

Відкриття закону відбиття світла Героном Александрійським стало одним із найперших прикладів виведення внаслідок математичної дедукції фізичного принципу з якогось глибшого, загальнішого принципу. Припустімо, що якийсь спостерігач у точці А бачить відображення у дзеркалі об’єкта, що розташоване в точці B . Якщо цей спостерігач бачить зображення об’єкта в точці P на дзеркалі, то промінь світла мав переміститися від B до P , а потім до A . (Герон, імовірно, сказав би, що світло перемістилося від спостерігача в точці А до дзеркала, а потім до об’єкта в точці B , так, ніби око дотяглося й торкнулося цього об’єкта, але для наведених нижче аргументів це не має значення.) Запитання тут таке: де саме на дзеркалі розташована точка P ?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Пояснюючи світ»

Представляем Вашему вниманию похожие книги на «Пояснюючи світ» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Пояснюючи світ»

Обсуждение, отзывы о книге «Пояснюючи світ» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x