Стивен Вайнберг - Пояснюючи світ

Здесь есть возможность читать онлайн «Стивен Вайнберг - Пояснюючи світ» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2019, Издательство: ООО «ЛитРес», www.litres.ru, Жанр: Физика, Прочая научная литература, sci_popular, на украинском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Пояснюючи світ: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Пояснюючи світ»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Є багато різних наук, і кожна з них пройшла тривалий етап становлення. Та чи замислювалися ви колись над тим, як розвивалася та трансформувалася… сама наука? Якою була її історія? Який сенс вкладали в поняття «наука» у період Античності, Середньовіччя, під час наукової революції XVI–XVII століть? Що змінилося, а що залишилося незмінним? Захоплива мандрівка – від перших експериментів давніх греків до теорії струн та гравітації. Історія фундаментальної науки, що пояснить не лише те, як ми прийшли до розуміння різноманітних речей про світ, а й те, як ми навчилися його пізнавати.

Пояснюючи світ — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Пояснюючи світ», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Тоді, використовуючи інші два рівняння, отримуємо:

Отже для пяти названих вище випадків кількості граней вершин та ребер такі - фото 16 Отже для пяти названих вище випадків кількості граней вершин та ребер такі - фото 17

Отже, для п’яти названих вище випадків кількості граней, вершин та ребер такі:

Це і є платонові тіла 3 Гармонія Піфагорійці відкрили що дві струни - фото 18

Це і є платонові тіла.

3. Гармонія

Піфагорійці відкрили, що дві струни музичного інструмента з однаковим натягом, товщиною та складом видаватимуть під час одночасного щипка приємний звук, якщо довжини цих струн відносяться одна до одної як малі цілі числа, наприклад, 1/2, 2/3, 1/4, 3/4 тощо. Щоб зрозуміти, чому це саме так, нам спершу потрібно зрозуміти, як взаємопов’язані частота, довжина хвилі та швидкість будь-якої хвилі.

Для будь-якої хвилі характерна певна амплітуда коливань. Амплітудою коливань звукової хвилі є зміна тиску в повітрі, що переносить цю хвилю; амплітудою океанської хвилі є товща води; амплітудою світлової хвилі з визначеним напрямком поляризації є електричне поле в такому напрямку; а амплітудою хвилі, що рухається вздовж струни музичного інструмента, є відхилення цієї струни від її нормального положення в напрямку, перпендикулярному до струни.

Найпростіший різновид хвилі має форму синусоїди. Якщо ми зробимо моментальне фото такої хвилі в будь-який момент часу, то побачимо, що амплітуда зникає в певних точках уздовж напрямку руху хвилі. Якщо ми подивимося від однієї такої точки далі вздовж напрямку руху, то побачимо, що амплітуда зростає, а потім поступово падає знову до нуля, а ще далі – падає до від’ємного значення і зростає знову до нуля, після чого повторює весь цикл знову і знову вздовж напрямку хвилі. Відстань між точками на початку та наприкінці будь-якого повного циклу називають довжиною хвилі й позначають символом λ (лямбда). Далі важливо зрозуміти, що, оскільки амплітуда хвилі має нульове значення не лише на початку та наприкінці циклу, а й посередині його, то відстань між сусідніми нульовими точками дорівнює половині довжини хвилі, тобто λ/2. Отже, будь-які дві точки, де амплітуда набуває нульового значення, мають бути розділені якоюсь цілою кількістю відрізків, що дорівнюють половині довжини хвилі.

Є фундаментальна математична теорема (чітко сформульована лише на початку XIX століття) про те, що майже будь-яке збурення (тобто будь-яке збурення, що достатньо плавно змінюється вздовж лінії поширення хвилі) можна виразити як суму синусоїдальних хвиль із різноманітними довжинами хвилі (це відомо як «аналіз Фур’є».).

Кожна окремо взята синусоїдальна хвиля демонструє характерне коливання в часі, а також у просторі вздовж напрямку руху хвилі. Якщо хвиля поширюється зі швидкістю υ , то за час t вона проходить відстань υt . Кількість довжин хвилі, що проходять повз фіксовану точку за час t , становитиме υt/ λ, тому кількість циклів на секунду в заданій точці, у якій і амплітуда, і швидкість її зміни знову повертаються до початкового значення, становить υ/ λ. Це відомо як частота, яку позначають символом ν (ню), тому ν = υ/ λ. Швидкість поширення хвилі від вібрації струни близька до сталої й залежить від натягу та маси струни, але майже не залежить від її довжини або амплітуди, тому для цих хвиль (як і для світла) частота просто обернено пропорційна довжині хвилі.

Тепер розгляньмо струну якогось музичного інструмента з довжиною L . Амплітуда коливань має дорівнювати нулю біля кінців цієї струни, де та кріпиться. Така умова обмежує довжину окремих синусоїдальних складових коливання хвилі вібрації струни. Ми вже зазначали, що відстань між будь-якими точками хвилі, у яких амплітуда коливання набуває нульового значення, має дорівнювати цілій кількості половин довжини хвилі. Отже, хвиля на струні, зафіксованій з обох кінців, має містити цілу кількість N половин довжини хвилі, тобто L = N λ/2. Отже, єдиними можливими довжинами хвилі є λ = 2 L/N , де N = 1, 2, 3 і далі, а тому єдиними можливими частотами [70]є такі:

ν = υN /2 L.

Найнижча частота (для випадку N = 1) дорівнює υ /2 L ; усі вищі частоти (для N = 2, N = 3 і далі) називають обертонами. Наприклад, найнижча частота для струни ноти до першої октави будь-якого інструмента дорівнює 261,63 циклу на секунду, але вона також вібрує за 523,26 циклу на секунду, 784,89 циклу на секунду й далі. Інтенсивності різних обертонів визначають звучання різних музичних інструментів.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Пояснюючи світ»

Представляем Вашему вниманию похожие книги на «Пояснюючи світ» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Пояснюючи світ»

Обсуждение, отзывы о книге «Пояснюючи світ» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x