Стивен Вайнберг - Пояснюючи світ

Здесь есть возможность читать онлайн «Стивен Вайнберг - Пояснюючи світ» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2019, Издательство: ООО «ЛитРес», www.litres.ru, Жанр: Физика, Прочая научная литература, sci_popular, на украинском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Пояснюючи світ: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Пояснюючи світ»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Є багато різних наук, і кожна з них пройшла тривалий етап становлення. Та чи замислювалися ви колись над тим, як розвивалася та трансформувалася… сама наука? Якою була її історія? Який сенс вкладали в поняття «наука» у період Античності, Середньовіччя, під час наукової революції XVI–XVII століть? Що змінилося, а що залишилося незмінним? Захоплива мандрівка – від перших експериментів давніх греків до теорії струн та гравітації. Історія фундаментальної науки, що пояснить не лише те, як ми прийшли до розуміння різноманітних речей про світ, а й те, як ми навчилися його пізнавати.

Пояснюючи світ — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Пояснюючи світ», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2(α + β) + (αʹ + βʹ) = 360°.

Тепер αʹ + βʹ – розгорнутий кут між сторонами AC та ВС , що утворюють відрізок прямої, а отже, дорівнюватиме половині повного оберту, або 180°, тому

2(α + β) = 360° − 180° = 180°,

а отже, α + β = 90°. На рис. 1 видно, що α + β є кутом між сторонами AP та BP трикутника ABP , з якого ми почали, тож це справді прямокутний трикутник, що і треба було довести.

2. Платонові тіла

У міркуваннях Платона про природу матерії центральну роль відігравав клас тіл, відомих як правильні багатогранники, що стали також відомі як платонові тіла. Ці правильні багатогранники можна вважати тривимірними узагальненнями правильних багатокутників планіметрії, і в деякому сенсі вони побудовані з правильних багатокутників. Правильний багатокутник є плоскою фігурою, обмеженою якоюсь кількістю n відрізків прямих, які мають однакову довжину й зустрічаються в кожній із n вершин з однаковими кутами. Прикладами є рівносторонній трикутник (трикутник, усі сторони якого рівні) і квадрат. Правильний багатогранник є об’ємним тілом, обмеженим однаковими правильними багатокутниками з однаковою кількістю N багатокутників, що збігаються в кожній вершині з однаковими кутами.

Найбільш знайомим нам прикладом правильного багатогранника є куб. Куб обмежується шістьма рівними квадратами, і в кожній із його восьми вершин збігаються три квадрати. Є ще простіший правильний багатогранник – тетраедр, трикутна піраміда, обмежена чотирма однаковими рівносторонніми трикутниками, і в кожній із його чотирьох вершин збігаються три трикутники. (Ми розглядатимемо тут лише опуклі багатогранники, у яких кожна вершина спрямована назовні, як-от куб і тетраедр.) Як свідчить текст «Тімея», Платону якимось чином було відомо, що ці правильні багатогранники бувають лише п’яти можливих форм; і він вважав, що такі форми мають атоми, з яких складається вся матерія. Цими формами є тетраедр, куб, октаедр, додекаедр, а також ікосаедр – з 4, 6, 8, 12, а також 20 гранями відповідно.

Найпершою (з тих, що дійшли до нас з античних часів) спробою довести, що існує лише п’ять правильних багатогранників, є кульмінаційний останній параграф Евклідових «Начал». У твердженнях з 13 по 17 Книги XIII Евклід наводить геометричні побудови тетраедра, октаедра, куба, ікосаедра, а також додекаедра. Нижче він стверджує: [69]«Далі я кажу, що не можна побудувати жодної іншої фігури, крім названих п’яти, що складалася б з рівносторонніх та рівнокутних фігур, рівних одна одній». Насправді ж після цього твердження Евклід зосередився на вужчому питанні, що для правильного багатогранника можливі лише п’ять комбінацій кількості сторін n кожної багатокутної грані, а також кількості N багатокутників, що збігаються в кожній вершині. Описане нижче доведення фактично таке саме, як Евклідове, тільки виражене в сучасних термінах.

Першим кроком буде обчислення внутрішнього кута θ (тета) у кожній із n вершин n -стороннього правильного багатокутника. Проведемо лінії від центра багатокутника до вершин. Це ділить багатокутник на n трикутників. Оскільки сума кутів будь-якого трикутника становить 180°, а кожен із цих трикутників має дві вершини з кутами θ/2, то кут третьої вершини кожного трикутника (тієї, що в центрі багатокутника) має дорівнювати 180°− θ. Але сума n таких кутів має становити 360°, тому n (180° − θ) = 360°. З цього отримуємо:

Наприклад для рівностороннього трикутника n 3 тому θ 180 120 60 - фото 12

Наприклад, для рівностороннього трикутника n = 3, тому θ == 180° − 120° = 60°, тоді як для квадрата n = 4, тому θ = 180° − 90° = 90°.

Наступним кроком уявімо собі, що ми відрізали всі ребра та вершини правильного багатогранника, крім тих, що збігаються в якийсь одній вершині, і розплющили те, що утворилося, на площині. Тоді N багатокутників, що збігаються в такій вершині, лежатимуть в одній площині, але між ними має бути простір, інакше N багатокутників утворять одну суцільну плоску фігуру. Тому має бути N θ < 360°. Підставивши замість θ отриману першим кроком формулу й поділивши обидві частини нерівності на 360°, отримаємо:

або що те саме якщо поділити обидві частини нерівності на N Ми маємо - фото 13

або, що те саме (якщо поділити обидві частини нерівності на N ):

Ми маємо отримати n 3 бо інакше не було б простору між сторонами - фото 14

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Пояснюючи світ»

Представляем Вашему вниманию похожие книги на «Пояснюючи світ» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Пояснюючи світ»

Обсуждение, отзывы о книге «Пояснюючи світ» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x